-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreco_based.py
62 lines (55 loc) · 2.41 KB
/
reco_based.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from reconstruct import iradon_centered
from skimage.filters import sobel_h, sobel_v
from scipy.interpolate import InterpolatedUnivariateSpline
from tqdm import tqdm
import numpy as np
import matplotlib.pyplot as plt
def image_entropy(reco, eps=1e-12):
return np.sum(reco * np.log(reco + eps))
def inv_image_gradient(reco, eps=1e-12):
sobelx = sobel_v(reco)
sobely = sobel_h(reco)
grad_norm = (sobelx ** 2 + sobely ** 2) ** (1 / 2)
return grad_norm.sum()
def run_method_on_set(sino, angles, shift=15, use_spline_minima=True, method=inv_image_gradient, reconstructor=iradon_centered, verbose=True):
best_id = 0
temp_loss = []
for i in tqdm(range(-shift, shift), ):
reco = reconstructor(sino, angles, center=sino.shape[1] / 2. + i)
temp_sum = method(reco)
temp_loss.append(temp_sum)
if use_spline_minima:
x_axis = np.arange(-shift, shift)
f = InterpolatedUnivariateSpline(x_axis, np.array(temp_loss), k=4)
cr_pts = f.derivative().roots()
cr_pts = np.append(cr_pts, (x_axis[0], x_axis[-1])) # also check the endpoints of the interval
cr_vals = f(cr_pts)
min_index = np.argmin(cr_vals)
max_index = np.argmax(cr_vals)
min_point = cr_pts[min_index]
else:
min_point = np.argmin(temp_loss) - shift
if verbose:
print('predict:', min_point)
plt.plot(np.arange(-shift, shift), temp_loss)
plt.show()
return min_point
def run_method_diff(sino, angles, start_point=0., eps=0.25, iters=20, step=0.5, step_size='gradient', method=inv_image_gradient, reconstructor=iradon_centered, verbose=True):
shift = start_point
temp_loss = []
for i in range(iters):
print(sino.shape[1] / 2. + shift - eps, sino.shape[1] / 2. + shift + eps)
reco_left = reconstructor(sino.copy(), angles, center=sino.shape[1] / 2. + shift - eps)
reco_right = reconstructor(sino.copy(), angles, center=sino.shape[1] / 2. + shift + eps)
sum_left = method(reco_left)
sum_right = method(reco_right)
gradient = (sum_right - sum_left) / (2 * eps)
update = gradient * step
if step_size == 'fixed':
update = step * np.sign(gradient)
if verbose:
print('iter:', i, 'sums:', sum_left, sum_right, 'gradient:', gradient, 'new_shift:', shift, 'update:', update)
if update < eps:
break
shift += update
return shift