-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtrain_multitask.py
250 lines (188 loc) · 9.86 KB
/
train_multitask.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import os
import numpy as np
import pandas as pd
import torch
from torch import nn, optim
from tqdm.autonotebook import tqdm
from torch.utils.data import DataLoader, ConcatDataset, RandomSampler
import argparse
from sklearn.metrics import jaccard_score
from models.model_multitask import *
from dataset_multitask import create_dataset
print('running on...', device)
def multi_acc(y_pred, y_test):
y_pred_softmax = torch.log_softmax(y_pred, dim=1)
_, y_pred_tags = torch.max(y_pred_softmax, dim=1)
correct_pred = (y_pred_tags == y_test).float()
acc = correct_pred.sum() / len(correct_pred)
return acc
def train_model(model, params, opt, channels, datadir, seglabeldir, reg_file, checkpoint_dir):
"""Wrapper function for model training.
:param model: model instance
:param params: parameters
:param opt: optimizer instance
:param channels: list of channels indices
:param datadir: path to satellite images
:param seglabeldir: path to segmentation labels
:param reg_file: path to csv file for regression
:param checkpoint_dir: path to model checkpoints"""
exp_out_dir = os.path.join(checkpoint_dir, params.exp_name)
os.makedirs(os.path.join(exp_out_dir, 'regression_checkpoints'), exist_ok=True)
os.makedirs(os.path.join(exp_out_dir, 'segmentation_checkpoints'), exist_ok=True)
os.makedirs(os.path.join(exp_out_dir, 'classification_checkpoints'), exist_ok=True)
reg_data = pd.read_csv(reg_file)
# create dataset
data_train_120x120 = create_dataset(
datadir=os.path.join(datadir, 'training/120x120/'), seglabeldir=os.path.join(seglabeldir, 'training/120x120/'),
reg_data=reg_data, mult=4, train=True, channels=channels)
data_train_300x300 = create_dataset(
datadir=os.path.join(datadir, 'training/300x300/'), seglabeldir=os.path.join(seglabeldir, 'training/300x300/'),
reg_data=reg_data, mult=4, train=True, channels=channels, size=300)
data_val = create_dataset(
datadir=os.path.join(datadir, 'validation/'), seglabeldir=os.path.join(seglabeldir, 'validation/'),
reg_data=reg_data, mult=1, channels=channels)
data_train = ConcatDataset([data_train_120x120, data_train_300x300])
# draw random subsamples
train_sampler = RandomSampler(data_train, replacement=True, num_samples=int(2 * len(data_train) / 3))
# initialize data loaders
train_dl = DataLoader(data_train, batch_size=params.bs, num_workers=6,
pin_memory=True, sampler=train_sampler)
val_dl = DataLoader(data_val, batch_size=params.bs)
best_mse, best_val_iou, best_val_acc = np.inf, 0.0, 0.0
# define losses
loss_r = nn.L1Loss() # regression loss
loss_c = nn.CrossEntropyLoss() # classification loss
loss_s = nn.BCEWithLogitsLoss() # segmentation loss
scaling_factor = 0.001
w_seg, w_reg, w_cls = 0.15, scaling_factor * 0.7, scaling_factor * 0.15
for epoch in range(params.ep):
model.train()
train_loss_total, train_bin_acc_total = 0, 0
train_ious = []
train_image_loss_total, train_gen_loss_total, train_bin_loss_total = 0, 0, 0
progress = tqdm(enumerate(train_dl), desc="Train Loss: ",
total=len(train_dl))
for i, batch in progress:
x = batch['img'].float().to(device)
w = batch['weather'].float().to(device)
y = batch['fpt'].float().to(device)
e = batch['gen_output'].float().to(device)
t = batch['type'].long().to(device)
seg_output, reg_output, cls_output = model(x, w)
output_binary = np.zeros(seg_output.shape)
output_binary[seg_output.cpu().detach().numpy() >= 0] = 1
# derive IoU values
for j in range(y.shape[0]):
z = jaccard_score(y[j].flatten().cpu().detach().numpy(), output_binary[j][0].flatten())
if (np.sum(output_binary[j][0]) != 0 and np.sum(y[j].cpu().detach().numpy()) != 0):
train_ious.append(z)
# classification accuracy
bin_acc = multi_acc(cls_output, t)
train_bin_acc_total += bin_acc
# derive loss
loss_image = loss_s(seg_output, y.unsqueeze(dim=1))
loss_gen = loss_r(reg_output, e.unsqueeze(dim=1))
loss_bin = loss_c(cls_output, t)
loss_epoch = w_seg * loss_image + w_reg * loss_gen + w_cls * loss_bin
train_image_loss_total += loss_image.item()
train_gen_loss_total += loss_gen.item()
train_bin_loss_total += loss_bin.item()
train_loss_total += loss_epoch.item()
progress.set_description("Train Loss: {:.4f}".format(
train_loss_total / (i + 1)))
# learning
opt.zero_grad()
loss_epoch.backward()
opt.step()
torch.cuda.empty_cache()
# evaluation
model.eval()
val_loss_total, val_bin_acc_total = 0, 0
val_ious = []
val_image_loss_total, val_gen_loss_total, val_bin_loss_total = 0, 0, 0
progress = tqdm(enumerate(val_dl), desc="val Loss: ",
total=len(val_dl))
with torch.no_grad():
for j, batch in progress:
x = batch['img'].float().to(device)
w = batch['weather'].float().to(device)
y = batch['fpt'].float().to(device)
e = batch['gen_output'].float().to(device)
t = batch['type'].long().to(device)
seg_output, reg_output, cls_output = model(x, w)
# classification accuracy
bin_acc = multi_acc(cls_output, t)
val_bin_acc_total += bin_acc
# derive losses
loss_image = loss_s(seg_output, y.unsqueeze(dim=1))
loss_bin = loss_c(cls_output, t)
loss_gen = loss_r(reg_output, e.unsqueeze(dim=1))
loss_epoch = w_seg * loss_image + w_reg * loss_gen + w_cls * loss_bin
val_loss_total += loss_epoch.item()
val_image_loss_total += loss_image.item()
val_bin_loss_total += loss_bin.item()
val_gen_loss_total += loss_gen.item()
# derive binary segmentation map from prediction
output_binary = np.zeros(seg_output.shape)
output_binary[seg_output.cpu().detach().numpy() >= 0] = 1
# derive IoU values
for k in range(y.shape[0]):
z = jaccard_score(y[k].flatten().cpu().detach().numpy(), output_binary[k][0].flatten())
if (np.sum(output_binary[k][0]) != 0 and np.sum(y[k].cpu().detach().numpy()) != 0):
val_ious.append(z)
progress.set_description("val Loss: {:.4f}".format(
val_loss_total / (j + 1)))
print((
"Epoch {:d}: total train loss={:.3f}, seg loss={:.3f}, reg loss={:.3f}, cls loss={:.3f}, total val loss={:.3f}, "
" seg loss={:.3f}, reg loss={:.3f}, cls loss={:.3f}, train iou={:.3f}, val iou={:.3f}, train cls acc={:.3f}, val cls acc={:.3f}").format(
epoch + 1, train_loss_total / (i + 1), train_image_loss_total / (i + 1), train_gen_loss_total / (i + 1),
train_bin_loss_total / (i + 1), val_loss_total / (j + 1), val_image_loss_total / (j + 1),
val_gen_loss_total / (j + 1), val_bin_loss_total / (j + 1), np.average(train_ious), np.average(val_ious),
train_bin_acc_total / (i + 1), val_bin_acc_total / (j + 1)))
if np.average(val_ious) >= best_val_iou:
best_val_iou = np.average(val_ious)
# save model checkpoint
torch.save(
model.state_dict(),
os.path.join(exp_out_dir, 'segmentation_checkpoints/ep{:0d}_lr{:.0e}_bs{:02d}_mo{:.1f}_{:03d}.model'.format(
params.ep, params.lr, params.bs, params.mo, epoch)))
if val_gen_loss_total / (j + 1) <= best_mse:
best_mse = val_gen_loss_total / (j + 1)
# save model checkpoint
torch.save(
model.state_dict(),
os.path.join(exp_out_dir, 'regression_checkpoints/ep{:0d}_lr{:.0e}_bs{:02d}_mo{:.1f}_{:03d}.model'.format(
params.ep, params.lr, params.bs, params.mo, epoch)))
if val_bin_acc_total / (j + 1) >= best_val_acc:
best_val_acc = val_bin_acc_total / (j + 1)
torch.save(
model.state_dict(),
os.path.join(exp_out_dir, 'classification_checkpoints/ep{:0d}_lr{:.0e}_bs{:02d}_mo{:.1f}_{:03d}.model'.format(
params.ep, params.lr, params.bs, params.mo, epoch)))
def main():
# setup argument parser
parser = argparse.ArgumentParser()
parser.add_argument('-ep', type=int, default=300,
help='Number of epochs')
parser.add_argument('-bs', type=int, nargs='?',
default=32, help='Batch size')
parser.add_argument('-lr', type=float,
nargs='?', default=0.1, help='Learning rate')
parser.add_argument('-mo', type=float,
nargs='?', default=0.7, help='Momentum')
parser.add_argument('-exp_name', type=str, default='',
help='Name of experiment')
parser.add_argument('-channels', type=str, default='0,1,2,3,4,5,6,7,8,9,10,11',
help='Channels')
args = parser.parse_args()
channels = [int(c) for c in args.channels.split(',')]
model = MultiTaskModel(n_channels=len(channels), n_classes=1)
model.to(device)
# initialize optimizer
opt = optim.SGD(model.parameters(), lr=args.lr, momentum=args.mo)
# run training
train_model(
model, args, opt, channels, datadir='data/images/', seglabeldir='data/segmentation_labels/',
reg_file='labels.csv', checkpoint_dir='checkpoints')
if __name__ == '__main__':
main()