-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathweakLearner.py
304 lines (240 loc) · 10 KB
/
weakLearner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
#---------------Instructions------------------#
# You will be writing a super class named WeakLearner
# and then will be implmenting its sub classes
# RandomWeakLearner and LinearWeakLearner. Remember
# all the overridded functions in Python are by default
# virtual functions and every child classes inherits all the
# properties and attributes of parent class.
# Your task is to override the train and evaluate functions
# of superclass WeakLearner in each of its base classes.
# For this purpose you might have to write the auxiliary functions as well.
#--------------------------------------------------#
# Now, go and look for the missing code sections and fill them.
#-------------------------------------------#
import numpy as np
import scipy.stats as stats
from numpy import inf
import random
class WeakLearner: # A simple weaklearner you used in Decision Trees...
""" A Super class to implement different forms of weak learners...
"""
def __init__(self):
self.F_Index,self.Split=-1,-1
def TotalEntropy(self,Y):
UniqueLabels,Count=np.unique(Y,return_counts=True)
TotalCount=np.sum(Count)
TotalEntropy=0
for i in range(len(UniqueLabels)):
TotalEntropy+=(-Count[i]/TotalCount)*np.log2(Count[i]/TotalCount)
return TotalEntropy
def calculateEntropy(self, Y, mship):
TotalLabelsLesser,TotalLabelsGreater=Y[mship],Y[mship==0]
UniqueLabelsGreater,CountGreater=np.unique(TotalLabelsGreater,return_counts=True)
UniqueLabelsLesser,CountLesser=np.unique(TotalLabelsLesser,return_counts=True)
TotalGreaterCount,TotalLesserCount=np.sum(CountGreater),np.sum(CountLesser)
TotalCount=TotalGreaterCount+TotalLesserCount
result_1=0
result_2=0
for k in range(len(UniqueLabelsGreater)):
if CountGreater[k]!=0 and TotalGreaterCount!=0:
result_1+= ((-CountGreater[k]/TotalGreaterCount)*np.log2(CountGreater[k]/TotalGreaterCount))
for k in range(len(UniqueLabelsLesser)):
if CountLesser[k]!=0 and TotalLesserCount!=0:
result_2+= ((-CountLesser[k]/TotalLesserCount)*np.log2(CountLesser[k]/TotalLesserCount))
return result_1*(TotalGreaterCount/TotalCount) + result_2*(TotalLesserCount/TotalCount)
def evaluate_numerical_attribute(self,feat, Y):
TotalEntropy=self.TotalEntropy(Y)
UniqueLabels,Count=np.unique(Y,return_counts=True)
Index=0
TargetedEntropy=float('Inf')
for i in range(len(feat)):
Point=feat[i]
mship=feat<=Point
Temp=self.calculateEntropy(Y,mship)
if Temp<TargetedEntropy:
TargetedEntropy=Temp
Index=i
score=TotalEntropy-TargetedEntropy
split=feat[Index]
RightChildInd=feat>split
LeftChildInd=feat<=split
return split, score,LeftChildInd,RightChildInd
def train(self, X, Y):
nexamples,nfeatures=X.shape
split,score,LeftChildInd,RightChildInd=0,-float('inf'),0,0
FeatureIndex=-1
for i in range(nfeatures):
split_temp,score_temp,LeftChildInd_temp,RightChildInd_temp=self.evaluate_numerical_attribute(X[:,i],Y)
if i!=0:
if score_temp>score:
score=score_temp
split=split_temp
LeftChildInd=LeftChildInd_temp
RightChildInd=RightChildInd_temp
FeatureIndex=i
else:
score=score_temp
split=split_temp
LeftChildInd=LeftChildInd_temp
RightChildInd=RightChildInd_temp
FeatureIndex=i
self.F_Index=FeatureIndex
self.Split=split
return split,score,LeftChildInd,RightChildInd
def evaluate(self,X):
if X[self.F_Index]<=self.Split:
return True
return False
class RandomWeakLearner(WeakLearner): # Axis Aligned weak learner....
def __init__(self, nsplits=+np.inf, nrandfeat=None):
WeakLearner.__init__(self) # calling base class constructor...
self.nsplits=nsplits
self.nrandfeat=nrandfeat
self.fidx=-1
self.split=-1
#pass
def train(self, X, Y):
#print "Inside the train of Random"
nexamples,nfeatures=X.shape
#print "Train has X of length ", X.shape
if(not self.nrandfeat):
self.nrandfeat=int(np.round(np.sqrt(nfeatures)))
#-----------------------TODO-----------------------#
#--------Write Your Code Here ---------------------#
Index=-1
split,score,LeftChildInd,RightChildInd=0,-float('inf'),0,0
Features=np.random.randint(0,nfeatures,self.nrandfeat)
for i in range(len(Features)):
split_temp,score_temp,LeftChildInd_temp,RightChildInd_temp=self.findBestRandomSplit(X[:,Features[i]],Y)
if score_temp>score:
score=score_temp
split=split_temp
LeftChildInd=LeftChildInd_temp
RightChildInd=RightChildInd_temp
Index=Features[i]
self.F_Index=Index
self.Split=split
return split,score,LeftChildInd,RightChildInd
#---------End of Your Code-------------------------#
def findBestRandomSplit(self,feat,Y):
frange=np.max(feat)-np.min(feat)
#-----------------------TODO-----------------------#
#--------Write Your Code Here ---------------------#
TotalEntropy=self.TotalEntropy(Y)
splitvalue,TargetEntropy,Index=0,float('inf'),-1
for i in range(self.nsplits):
RandomIndex=random.randrange(len(feat))
mship=feat<=feat[RandomIndex]
score_temp=self.calculateEntropy(Y,mship)
if score_temp<=TargetEntropy:
TargetEntropy=score_temp
splitvalue=feat[RandomIndex]
Index=RandomIndex
#---------End of Your Code-------------------------#
score=TotalEntropy-TargetEntropy
LeftChildInd=feat<=feat[Index]
RightChildInd=feat>feat[Index]
return splitvalue, score, LeftChildInd, RightChildInd
def evaluate(self, X):
#-----------------------TODO-----------------------#
#--------Write Your Code Here ---------------------#
#print X.shape, self.fidx, "xshape"
if X[self.F_Index]<=self.Split:
return True
return False
#---------End of Your Code-------------------------#
# build a classifier ax+by+c=0
class LinearWeakLearner(RandomWeakLearner): # A 2-dimensional linear weak learner....
def __init__(self, nsplits=10):
self.a=0
self.b=0
self.c=0
self.F1=0
self.F2=0
RandomWeakLearner.__init__(self,nsplits)
#pass
def train(self,X, Y):
nexamples,nfeatures=X.shape
#-----------------------TODO-----------------------#
#--------Write Your Code Here ---------------------#
MinScore,Index=float('Inf'),-1
self.F1,self.F2=random.sample(range(0, nfeatures), 2)
Left=[]
Right=[]
for i in range(self.nsplits):
Temp_a,Temp_b,Temp_c=np.random.uniform(-4,4,3)
Results=[]
for j in range(len(X)):
if (Temp_a*X[j,self.F1]+Temp_b*X[j,self.F2]+Temp_c)<=0:
Results.append(1)
else:
Results.append(0)
if np.sum(Results)>0 and np.sum(Results)<len(X):
Score=super().calculateEntropy(Y,list(Results))
if MinScore>=Score:
MinScore=Score
self.a=Temp_a
self.b=Temp_b
self.c=Temp_c
Index=i
Left=Results
Right=Results
for i in range(len(Right)):
if Right[i]==1:
Right[i]=0
else:
Right[i]=1
return 0, MinScore, Left, Right
def evaluate(self,X):
if self.a*X[self.F1]+self.b*X[self.F2]+self.c<=0:
return True
return False
#build a classifier a*x^2+b*y^2+c*x*y+ d*x+e*y+f
class ConicWeakLearner(RandomWeakLearner): # A 2-dimensional linear weak learner....
def __init__(self, nsplits=10):
self.a=0
self.b=0
self.c=0
self.d=0
self.e=0
self.f=0
self.F1=0
self.F2=0
RandomWeakLearner.__init__(self,nsplits)
pass
def train(self,X, Y):
nexamples,nfeatures=X.shape
MinScore,Index=float('Inf'),-1
self.F1,self.F2=random.sample(range(0, nfeatures), 2)
Left=[]
Right=[]
for i in range(self.nsplits):
Temp_a,Temp_b,Temp_c,Temp_d,Temp_e,Temp_f=np.random.uniform(-4,4,6)
Results=[]
for j in range(len(X)):
if (Temp_a*(X[j,self.F1]**2)+Temp_b*(X[j,self.F2]**2)+Temp_c*X[j,self.F1]*X[j,self.F2] + Temp_d*X[j,self.F1]+ Temp_e*X[j,self.F2] +Temp_f<=0)<=0:
Results.append(1)
else:
Results.append(0)
if np.sum(Results)>0 and np.sum(Results)<len(X):
Score=super().calculateEntropy(Y,list(Results))
if MinScore>=Score:
MinScore=Score
self.a=Temp_a
self.b=Temp_b
self.c=Temp_c
self.d=Temp_d
self.e=Temp_e
self.f=Temp_f
Index=i
Left=Results
for i in range(len(Left)):
if Left[i]==1:
Right.append(0)
else:
Right.append(1)
return 0, MinScore, Left, Right
def evaluate(self,X):
if self.a*(X[self.F1]**2)+self.b*(X[self.F2]**2)+self.c*X[self.F1]*X[self.F2] + self.d*X[self.F1]+ self.e*X[self.F2] +self.f<=0:
return True
return False