-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain_online.py
184 lines (152 loc) · 7.66 KB
/
main_online.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
from pathlib import Path
import gym
import d4rl
import numpy as np
import itertools
import os
import torch
from tqdm import trange
from pex.algorithms.pex import PEX
from pex.algorithms.iql_online import IQL_online
from pex.networks.policy import GaussianPolicy
from pex.networks.value_functions import DoubleCriticNetwork, ValueNetwork
from pex.utils.util import (
set_seed, ReplayMemory, torchify, eval_policy, torchify, DEFAULT_DEVICE,
get_batch_from_dataset_and_buffer,
eval_policy, set_default_device, get_env_and_dataset)
def main(args):
torch.set_num_threads(1)
if os.path.exists(args.log_dir):
print(f"The directory {args.log_dir} exists. Please specify a different one.")
return
else:
print(f"Creating directory {args.log_dir}")
os.mkdir(args.log_dir)
env, dataset, reward_transformer = get_env_and_dataset(args.env_name, args.max_episode_steps)
dataset_size = dataset['observations'].shape[0]
obs_dim = dataset['observations'].shape[1]
act_dim = dataset['actions'].shape[1]
if args.seed is not None:
set_seed(args.seed, env=env)
if torch.cuda.is_available():
set_default_device()
action_space = env.action_space
policy = GaussianPolicy(obs_dim, act_dim, hidden_dim=args.hidden_dim, n_hidden=args.hidden_num, action_space=action_space, scale_distribution=False, state_dependent_std=False)
algorithm_option = args.algorithm.upper()
if algorithm_option == "SCRATCH":
double_buffer = False
alg = IQL_online(
critic=DoubleCriticNetwork(obs_dim, act_dim, hidden_dim=args.hidden_dim, n_hidden=args.hidden_num),
vf=ValueNetwork(obs_dim, hidden_dim=args.hidden_dim, n_hidden=args.hidden_num),
policy=policy,
optimizer_ctor=lambda params: torch.optim.Adam(params, lr=args.learning_rate),
tau=args.tau,
beta=args.beta,
target_update_rate=args.target_update_rate,
discount=args.discount,
ckpt_path=None
)
elif algorithm_option == "BUFFER":
double_buffer = True
alg = IQL_online(
critic=DoubleCriticNetwork(obs_dim, act_dim, hidden_dim=args.hidden_dim, n_hidden=args.hidden_num),
vf=ValueNetwork(obs_dim, hidden_dim=args.hidden_dim, n_hidden=args.hidden_num),
policy=policy,
optimizer_ctor=lambda params: torch.optim.Adam(params, lr=args.learning_rate),
tau=args.tau,
beta=args.beta,
target_update_rate=args.target_update_rate,
discount=args.discount,
ckpt_path=None
)
elif algorithm_option == "DIRECT":
double_buffer = True
assert args.ckpt_path, "need to provide a valid checkpoint path"
alg = IQL_online(
critic=DoubleCriticNetwork(obs_dim, act_dim, hidden_dim=args.hidden_dim, n_hidden=args.hidden_num),
vf=ValueNetwork(obs_dim, hidden_dim=args.hidden_dim, n_hidden=args.hidden_num),
policy=policy,
optimizer_ctor=lambda params: torch.optim.Adam(params, lr=args.learning_rate),
tau=args.tau,
beta=args.beta,
target_update_rate=args.target_update_rate,
discount=args.discount,
ckpt_path=args.ckpt_path
)
elif algorithm_option == "PEX":
double_buffer = True
assert args.ckpt_path, "need to provide a valid checkpoint path"
alg = PEX(
critic=DoubleCriticNetwork(obs_dim, act_dim, hidden_dim=args.hidden_dim, n_hidden=args.hidden_num),
vf=ValueNetwork(obs_dim, hidden_dim=args.hidden_dim, n_hidden=args.hidden_num),
policy=policy,
optimizer_ctor=lambda params: torch.optim.Adam(params, lr=args.learning_rate),
tau=args.tau,
beta=args.beta,
target_update_rate=args.target_update_rate,
discount=args.discount,
ckpt_path=args.ckpt_path,
inv_temperature=args.inv_temperature,
)
memory = ReplayMemory(args.replay_size, args.seed)
total_numsteps = 0
for i_episode in itertools.count(1):
episode_reward = 0
episode_steps = 0
done = False
state = env.reset()
while not done:
action = alg.select_action(torchify(state).to(DEFAULT_DEVICE)).detach().cpu().numpy()
if len(memory) > args.initial_collection_steps:
for i in range(args.updates_per_step):
alg.update(*get_batch_from_dataset_and_buffer(dataset, memory, args.batch_size, double_buffer))
next_state, reward, done, _ = env.step(action)
episode_steps += 1
total_numsteps += 1
episode_reward += reward
reward_for_replay = reward_transformer(reward)
terminal = 0 if episode_steps == env._max_episode_steps else float(done)
memory.push(state, action, reward_for_replay, next_state, terminal)
state = next_state
if total_numsteps % args.eval_period == 0 and args.eval is True:
print("Episode: {}, total env-steps: {}".format(i_episode, total_numsteps))
eval_policy(env, args.env_name, alg, args.max_episode_steps, args.eval_episode_num)
if total_numsteps > args.total_env_steps:
break
env.close()
torch.save(alg.state_dict(), args.log_dir + '/{}_online_ckpt'.format(args.algorithm))
if __name__ == '__main__':
from argparse import ArgumentParser
parser = ArgumentParser()
parser.add_argument('--algorithm', required=True) # ['direct', 'buffer', 'pex']
parser.add_argument('--env_name', required=True)
parser.add_argument('--log_dir', required=True)
parser.add_argument('--seed', type=int, default=None)
parser.add_argument('--discount', type=float, default=0.99)
parser.add_argument('--hidden_dim', type=int, default=256)
parser.add_argument('--hidden_num', type=int, default=2)
parser.add_argument('--batch_size', type=int, default=256)
parser.add_argument('--learning_rate', type=float, default=3e-4)
parser.add_argument('--target_update_rate', type=float, default=0.005)
parser.add_argument('--tau', type=float, default=0.7)
parser.add_argument('--beta', type=float, default=10.0,
help='IQL inverse temperature')
parser.add_argument('--ckpt_path', default=None,
help='path to the offline checkpoint')
parser.add_argument('--replay_size', type=int, default=1000000, metavar='N',
help='size of replay buffer (default: 10000000)')
parser.add_argument('--total_env_steps', type=int, default=1000001, metavar='N',
help='total number of env steps (default: 1000000)')
parser.add_argument('--initial_collection_steps', type=int, default=5000, metavar='N',
help='Initial environmental steps before training starts (default: 5000)')
parser.add_argument('--updates_per_step', type=int, default=1, metavar='N',
help='model updates per simulator step (default: 1)')
parser.add_argument('--inv_temperature', type=float, default=10, metavar='G',
help='inverse temperature for PEX action selection (default: 10)')
parser.add_argument('--eval', type=bool, default=True,
help='Evaluates a policy a policy every 10 episode (default: True)')
parser.add_argument('--eval_period', type=int, default=10000)
parser.add_argument('--eval_episode_num', type=int, default=10,
help='Number of evaluation episodes (default: 10)')
parser.add_argument('--max_episode_steps', type=int, default=1000)
main(parser.parse_args())