-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
138 lines (117 loc) · 4.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import numpy as np
from torch.utils.data import DataLoader
from learner import Learner
from loss import *
from dataset import *
# from lstm import Lstm
import os
from sklearn import metrics
import warnings
import pandas as pd
warnings.filterwarnings("ignore")
normal_train_dataset = Normal_Loader(is_train=1)
normal_test_dataset = Normal_Loader(is_train=0)
anomaly_train_dataset = Anomaly_Loader(is_train=1)
anomaly_test_dataset = Anomaly_Loader(is_train=0)
normal_train_loader = DataLoader(normal_train_dataset, batch_size=30, shuffle=True)
normal_test_loader = DataLoader(normal_test_dataset, batch_size=1, shuffle=True)
anomaly_train_loader = DataLoader(anomaly_train_dataset, batch_size=30, shuffle=True)
anomaly_test_loader = DataLoader(anomaly_test_dataset, batch_size=1, shuffle=True)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = Learner(input_dim=2048).to(device)
optimizer = torch.optim.Adagrad(model.parameters(), lr=0.001, weight_decay=0.0010000000474974513)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[25, 50])
criterion = MIL
def train(epoch):
print('\nEpoch: %d' % epoch)
model.train()
train_loss = 0
correct = 0
total = 0
for batch_idx, (normal_inputs, anomaly_inputs) in enumerate(zip(normal_train_loader, anomaly_train_loader)):
inputs = torch.cat([anomaly_inputs, normal_inputs], dim=1)
batch_size = inputs.shape[0]
inputs = inputs.view(-1, inputs.size(-1)).to(device)
outputs = model(inputs)
loss = criterion(outputs, batch_size)
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss += loss.item()
#print('loss = ', train_loss / len(normal_train_loader))
scheduler.step()
return train_loss / len(normal_train_loader)
def test_abnormal(epoch):
model.eval()
matrix = np.zeros((2,2))
auc = 0
recall = 0
precision = 0
f_score = 0
with torch.no_grad():
for i, (data, data2) in enumerate(zip(anomaly_test_loader, normal_test_loader)):
inputs, gts, frames = data
inputs = inputs.view(-1, inputs.size(-1)).to(torch.device('cpu'))
score = model(inputs)
score = score.cpu().detach().numpy()
# print(score)
score_list = np.zeros(frames[0])
step = np.round(np.linspace(0, frames[0] // 16, 33))
for j in range(32):
score_list[int(step[j]) * 16:(int(step[j + 1])) * 16] = score[j]
gt_list = np.zeros(frames[0])
for k in range(len(gts) // 2):
s = gts[k * 2]
e = min(gts[k * 2 + 1], frames)
gt_list[s - 1:e] = 1
inputs2, gts2, frames2 = data2
inputs2 = inputs2.view(-1, inputs2.size(-1)).to(torch.device('cpu'))
score2 = model(inputs2)
score2 = score2.cpu().detach().numpy()
score_list2 = np.zeros(frames2[0])
step2 = np.round(np.linspace(0, frames2[0] // 16, 33))
for kk in range(32):
score_list2[int(step2[kk]) * 16:(int(step2[kk + 1])) * 16] = score2[kk]
gt_list2 = np.zeros(frames2[0])
score_list3 = np.concatenate((score_list, score_list2), axis=0)
gt_list3 = np.concatenate((gt_list, gt_list2), axis=0)
# print(len(gt_list3)) #binaire
# print(len(score_list3)) #non binare
score_final = [1 if i >= 0.5 else 0 for i in score_list3]
fpr, tpr, thresholds = metrics.roc_curve(gt_list3, score_list3, pos_label=1)
matrix += metrics.confusion_matrix(y_true=gt_list3, y_pred=score_final)
precision += metrics.precision_recall_fscore_support(gt_list3, score_final, pos_label=1)[0][0]
recall += metrics.precision_recall_fscore_support(gt_list3, score_final, pos_label=1)[1][0]
f_score += metrics.precision_recall_fscore_support(gt_list3, score_final, pos_label=1)[2][0]
auc += metrics.auc(fpr, tpr) # False negative !!
print(fpr)
print(tpr)
print(matrix)
auc = auc/140
precision = precision / 140
recall = recall / 140
f_score = f_score / 140
return auc, precision, recall, f_score, fpr, tpr
loss_vector = []
auc_vector = []
precision_vector = []
recall_vector = []
f_score_vector = []
for epoch in range(0,75):
loss = train(epoch)
auc, precision, recall, f_score, fpr, tpr = test_abnormal(epoch)
'''
loss_vector.append(loss)
auc_vector.append(auc)
precision_vector.append(precision)
recall_vector.append(recall)
f_score_vector.append(f_score)
data = {'loss': loss_vector,
'auc': auc_vector,
'precision': precision_vector,
'recall': recall_vector,
'F_score': f_score_vector
}
df = pd.DataFrame(data)
df.to_csv("pfa.csv")
'''