-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain_test_pnpadmm.py
103 lines (84 loc) · 3.49 KB
/
main_test_pnpadmm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import cv2
import csv
import os
import numpy as np
import time
import torch
from src.metrics import psnr, ssim
from src.config import get_cfg_defaults, get_args_from_parser
from src.models import make_model
from src.utils import mkdir, clear_result_dir
from src.data import tensor2complex, tensor2image, make_dataloader
from src.utils_pnp import load_models, recon_pnp_admm, get_denoiser
from scipy.io import savemat
import sys
sys.dont_write_bytecode = True
def main(cfg):
dataset = make_dataloader(cfg.TEST, False)
save_path = cfg.TEST.OUT_DIR
mkdir(save_path)
csv_path = os.path.join(save_path,'test_records.csv')
with open(csv_path, 'w') as f:
pass
torch.manual_seed(1234)
np.random.seed(1234)
time_test = 0
psnr_test = 0
ssim_test = 0
num_image = 0
print(f'load weights from {cfg.TEST.WEIGHT_PATH}')
models = load_models(cfg.TEST.WEIGHT_PATH, cfg)
denoiser = lambda image_recon, sigma: get_denoiser(models, image_recon, sigma)
for _, (file_path, batch) in enumerate(dataset):
image_target, image_zero_filled, kspace_sampled, mask = [i.cuda() for i in batch]
mask = mask.permute(0,2,3,1)
kspace_sampled = kspace_sampled.permute(0,2,3,1)
time1 = time.time()
image_predict, _ = recon_pnp_admm(denoiser,
image_zero_filled,
kspace_sampled,
mask,
gamma=1.2,
lam=6e-5,
rho=0.0041,
eta=1 + 1e-4,
max_iter=100,
eps=1e-6,
verbose=False)
time2 = time.time() - time1
time_test += time2/image_target.shape[0]
image_predict = tensor2complex(image_predict)
image_zero_filled = tensor2image(image_zero_filled)
image_target = tensor2image(image_target)
for i, file_path_i in enumerate(file_path):
num_image += 1
file_name = file_path_i.split('/')[-1].split('.')[0]
rec_im = image_predict[i]
savemat(os.path.join(save_path,f'{file_name}.mat'), {'rec_im': rec_im})
rec_im = np.clip(np.abs(rec_im), 0, 1)
psnr_i = psnr(image_target[i], rec_im, data_range=1.)
ssim_i = ssim(image_target[i], rec_im)
cv2.imwrite(os.path.join(save_path,f'{file_name}.png'), 255*np.abs(rec_im))
cv2.imwrite(os.path.join(save_path,f'{file_name}_zf.png'), 255*image_zero_filled[i])
cv2.imwrite(os.path.join(save_path,f'{file_name}.png'), 255*np.abs(image_target[i]))
psnr_test += psnr_i
ssim_test += ssim_i
print("File: %s Shape: %s, PSNR %f SSIM %.4f TIME %.4f" % (file_name, f'{rec_im.shape}',psnr_i, ssim_i, time2/image_target.shape[0]))
with open(csv_path,'a') as f:
writer = csv.writer(f)
writer.writerow([file_name, psnr_i, ssim_i, time2/image_target.shape[0]])
psnr_test /= num_image
ssim_test /= num_image
time_test /= len(dataset)
print(f"PSNR: {psnr_test}, SSIM: {ssim_test}\n, TIME:{time_test}")
with open(csv_path,'a') as f:
writer = csv.writer(f)
writer.writerow(['avr', psnr_test, ssim_test, time_test])
if __name__ == "__main__":
cfg = get_cfg_defaults()
args = get_args_from_parser()
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = ','.join([str(i) for i in cfg.SYSTEM.GPU_IDS[:cfg.SYSTEM.NUM_GPUS]])
main(cfg)