-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCornucopia.jl
642 lines (609 loc) · 17.7 KB
/
Cornucopia.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
using Pkg
Pkg.activate(pwd())
Pkg.instantiate()
using BenchmarkTools, Bessels, DataFrames, Distributions, PrettyTables, StatsBase, SpecialFunctions
using LinearAlgebra, Random
function mle_Cauchy(x::Vector)
T = eltype(x)
(m, iters) = (length(x), 0)
# w = similar(x) # weight vector
(mu, sigma) = (median(x), iqr(x) / 2) # Wikipedia initial values
(old_mu, old_sigma) = (mu, sigma)
for iteration = 1:100 # MM updates
iters = iters + 1
# @. w = 1 / (1 + ((x - mu) / sigma)^2)
# mu, s = mean_and_var(x, weights(w), corrected = false)
# sigma = sqrt(2s * sum(w) / m) # MM update of sigma
sumwx = sumwx2 = sumw = zero(T)
for i = 1:m
wi = 1 / (1 + ((x[i] - mu) / sigma)^2)
sumw = sumw + wi
sumwx = sumwx + wi * x[i]
sumwx2 = sumwx2 + wi * x[i]^2
end
mu = sumwx / sumw
sigma = sqrt(2(sumwx2 - mu^2 * sumw) / m)
# f = loglikelihood(Cauchy(mu, sigma), x)
# println(iteration," ",f," ",mu," ",sigma)
if abs(old_mu - mu) + abs(old_sigma - sigma) < 1.0e-6 # convergence
break
end
(old_mu, old_sigma) = (mu, sigma)
end
return (mu, sigma, iters)
end
function mle_gumbel(x::Vector)
(m, avg, iters) = (length(x), mean(x), 0)
alpha = 1 / sqrt(6 * var(x) / pi^2)
for iteration = 1:500
iters = iters + 1
df = m / alpha - m * avg
(s1, s2, s3) = (0.0, 0.0, 0.0)
f = m * log(alpha) - m * alpha * avg
for i = 1:m
c = exp(-alpha * x[i])
s1 = s1 + c
s2 = s2 + c * x[i]
s3 = s3 + c * x[i]^2
end
f = f - m * log(s1)
df = df + m * s2 / s1
d2f = -m / alpha^2 - m * s3 / s1 + df^2
alpha = alpha - df / d2f # Newton update
# println(iteration," ",f," ",alpha," ",df)
if abs(df) < 1e-6
break
end
end
beta = 1 / alpha
g(y) = exp(-y / beta)
mu = -beta * log(mean(g, x))
return (beta, mu, iters)
end
function mle_gumbel2(x::Vector)
(m, avg, iters) = (length(x), mean(x), 0)
v = (maximum(x) - minimum(x))^2 / 4
alpha = 1 / (sqrt(6 * var(x) / pi^2))
for iteration = 1:500
iters = iters + 1
(s1, s2) = (0.0, 0.0)
for i = 1:m
c = exp(-alpha * x[i])
s1 = s1 + c
s2 = s2 + c * x[i]
end
b = s2 / s1 - avg + alpha * v
df = m / alpha - m * avg + m * s2 / s1
alpha = (b + sqrt(b^2 + 4v)) / (2v)
# f = loglikelihood(Gumbel(1 / alpha), x)
# println(iteration," ",f," ",1 / alpha," ",df)
if abs(df) < 1e-6
break
end
end
beta = 1 / alpha
g(y) = exp(-y / beta)
mu = -beta * log(mean(g, x))
return (beta, mu, iters)
end
function mle_yule_simon(x::Vector)
T = eltype(x)
(m, avg, iters) = (length(x), mean(x), 0)
rho = max(avg / (avg - 1), one(T))
(f, df) = (zero(T), zero(T))
s = m * digamma(rho + 1) # pre-compute digamma(rho + 1)
for iteration = 1:100
iters = iters + 1
f = m * log(rho)
s = zero(T)
for i = 1:m
s = s - digamma(x[i] + rho + 1)
f = f + logbeta(x[i], rho + 1)
end
df = m / rho + s
rho = -m / s
if abs(df) < 1e-6
break
end
end
return (rho, iters)
end
function mle_logarithmic(x::Vector)
(avg, iters) = (mean(x), 0)
q = one(eltype(x))
for iteration = 1:100
iters = iters + 1
eq = exp(q)
b = eq / (1 + eq)
# f = -log(log(1 + eq)) + avg * (q - log(1 + eq))
df = - b / log(1 + eq) + avg - avg * b
q = q + 4 * df / avg
# println(iteration," ",f," ",q," ",df)
if abs(df) < 1e-6
break
end
end
return (exp(q) / (1 + exp(q)), iters)
end
# function mle_logarithmic2(x::Vector)
# (m, avg, iters) = (length(x), mean(x), 0)
# q = 1.0
# for iteration = 1:100
# iters = iters + 1
# eq = exp(q)
# b = eq / ((1 + eq) * log(1 + eq))
# f = -log(log(1 + eq)) + avg * (q - log(1 + eq))
# df = -b + avg - avg * eq / (1 + eq)
# q = -(b - avg / 2) / ((avg * (eq - 1) / (eq + 1) / (2q)))
# println(iteration," ",f," ",q," ",df)
# if abs(df) < 1e-6
# break
# end
# end
# return (exp(q) / (1 + exp(q)), iters)
# end
function mle_weibull(x::Vector)
T = eltype(x)
(m, kappa, old_kappa) = (length(x), one(T), one(T))
(avglog, iters) = (mean(log, x), 0)
v = (maximum(log, x) - minimum(log, x))^2 / 4
for iteration = 1:500
iters = iters + 1
(a, d) = (zero(T), zero(T))
for i = 1:m
c = x[i]^kappa
d = d + c
a = a + c * log(x[i])
end
b = - m * a / d + m * v * kappa + m * avglog
kappa = (b + sqrt(b^2 + 4m^2 * v)) / (2m * v)
# lambda = (d / m)^(1 / kappa)
# f = loglikelihood(Weibull(kappa, lambda), x)
# println(iteration," ",f)
if abs(kappa - old_kappa) < 1e-6
break
else
old_kappa = kappa
end
end
lambda = zero(T)
for i in 1:m
lambda = lambda + x[i]^kappa
end
lambda = (lambda / m)^(1 / kappa)
return (kappa, lambda, iters)
end
function mle_rice(x::Vector)
T = eltype(x)
(m, iters) = (length(x), 0)
meansq = mean(abs2, x)
(nu, old_nu) = (one(T), one(T))
(sigmasq, old_sigmasq) = (one(T), one(T))
for iteration = 1:500
iters = iters + 1
c = nu / sigmasq
nu = zero(T)
for i = 1:m
wi = Bessels.besseli(one(T), c * x[i]) / Bessels.besseli(zero(T), c * x[i]) # besseli has allocation?
nu = nu + wi * x[i]
end
nu = nu / m
sigmasq = (meansq - nu^2) / 2
# f = loglikelihood(Rician(nu, sqrt(sigmasq)), x)
# println(iteration," ",f)
if abs(nu - old_nu) + abs(sigmasq - old_sigmasq) < 1e-6
break
else
(old_nu, old_sigmasq) = (nu, sigmasq)
end
end
return (nu, sigmasq, iters)
end
function mle_dirichlet(x::Matrix)
T = eltype(x)
(m, p) = size(x)
(avglog, iters) = (mean(log, x, dims=2), 0)
(lambda, df) = (ones(T, m), zeros(T, m))
for iteration = 1:100
iters = iters + 1
c = digamma(sum(lambda))
for i = 1:m
df[i] = p * (c - digamma(lambda[i]) + avglog[i])
lambda[i] = invdigamma(c + avglog[i])
end
# f = loglikelihood(Dirichlet(lambda), x)
# println(iteration," ",f," ",norm(df))
if norm(df) < 1e-6
break
end
end
return (lambda, iters)
end
function mle_negative_binomial(x::Vector)
T = eltype(x)
(m, iters) = (length(x), 0)
(avg, ssq) = (mean(x), var(x, corrected=false))
(p, r) = (avg / ssq, avg^2 / (ssq - avg)) # MOM estimates
if r <= 0
r = one(T)
end
(old_p, old_r) = (p, r)
for iteration = 1:500
iters = iters + 1
# s = zero(T)
# for i = 1:m
# for j = 0:(x[i]-1)
# s = s + r / (r + j)
# end
# end
s = - m * r * digamma(r) # pre-compute digamma(r)
for i = 1:m
s = s + r * digamma(r + x[i])
end
r = - s / (m * log(p)) # MM update
p = r / (r + avg) # MLE update
# f = loglikelihood(NegativeBinomial(r,p), x)
# println(iteration," ",f)
if abs(p - old_p) + abs(r - old_r) < 1e-6
break
else
(old_p, old_r) = (p, r)
end
end
return (p, r, iters)
end
function mle_negative_binomial2(x::Vector)
T = eltype(x)
(m, iters) = (length(x), 0)
(avg, ssq) = (mean(x), var(x, corrected=false))
(p, r) = (avg / ssq, avg^2 / (ssq - avg)) # MOM estimates
if r <= 0
r = one(T)
end
(old_p, old_r) = (p, r)
for iteration = 1:500
iters = iters + 1
df = m * log(p)
d2f = 0.0
for i = 1:m
for j = 0:(x[i]-1)
d = 1 / (r + j)
df = df + d
d2f = d2f - d^2
end
end
r = r - df / d2f # Newton update
p = r / (r + avg) # MLE update
# f = loglikelihood(NegativeBinomial(r, p), x)
# println(iteration," ",f)
if abs(p - old_p) + abs(r - old_r) < 1.0e-6
break
end
(old_p, old_r) = (p, r)
end
return (p, r, iters)
end
function mle_inverse_gamma(x::Vector)
T = eltype(x)
(m, iters) = (length(x), 0)
(avglog, avginverse) = (mean(log, x), mean(inv, x))
(alpha, old_alpha) = (mean(x)^2 / var(x, corrected = false) + 2, one(T))
(beta, old_beta) = (one(T), one(T))
for iteration = 1:100
iters = iters + 1
beta = alpha / avginverse
alpha = invdigamma(log(beta) - avglog)
# f = loglikelihood(InverseGamma(alpha, beta), x)
# println(iteration," ",f," ",alpha)
if abs(alpha - old_alpha) + abs(beta - old_beta) < 1e-6
break
else
(old_alpha, old_beta) = (alpha, beta)
end
end
return (alpha, beta, iters)
end
function mle_gamma(x::Vector)
T = eltype(x)
(avg, avglog, iters) = (mean(x), mean(log, x), 0)
d = log(avg) - avglog
alpha = (3 - d + sqrt((3 - d)^2 + 24d)) / (12d)
(old_alpha, beta, old_beta) = (zero(T), zero(T), zero(T))
for iteration = 1:100
iters = iters + 1
beta = alpha / avg
alpha = invdigamma(log(beta) + avglog)
# f = loglikelihood(Gamma(alpha, 1 / beta), x)
# println(iteration," ",f," ",alpha)
if abs(alpha - old_alpha) + abs(beta - old_beta) < 1e-6
break
else
(old_alpha, old_beta) = (alpha, beta)
end
end
return (alpha, beta, iters)
end
function mle_gamma1(x::Vector)
T = eltype(x)
(avg, avglog, iters) = (mean(x), mean(log, x), 0)
logavg = log(avg)
d = logavg - avglog
alpha = (3 - d + sqrt((3 - d)^2 + 24d)) / (12d)
(old_alpha, beta, old_beta) = (zero(T), zero(T), zero(T))
for iteration = 1:100
iters = iters + 1
b = log(alpha) - d - digamma(alpha) - 1 / alpha + (pi^2 / 6) * alpha
alpha = (b + sqrt(b^2 + 2pi^2 / 3)) / (pi^2 / 3)
# beta = alpha / avg
# f = loglikelihood(Gamma(alpha, 1 / beta), x)
# println(iteration," ",f," ",alpha)
if abs(alpha - old_alpha) + abs(beta - old_beta) < 1e-6
break
else
(old_alpha, old_beta) = (alpha, beta)
end
end
beta = alpha / avg
return (alpha, beta, iters)
end
function logarithmic_deviate(p, n)
x = zeros(Int, n)
mu = -p / (log(1 - p) * (1 - p))
v = -(p^2 + p * log(1 - p)) / ((1 - p) * log(1 - p))^2
x[1] = round(Int, mu)
for i = 1:(n-1)
u = rand(2)
if u[1] < 1 / 2
if u[2] < (x[i] - 1) / (p * x[i])
x[i+1] = x[i] - 1
else
x[i+1] = x[i]
end
else
if u[2] < (p / (x[i] + 1)) * x[i]
x[i+1] = x[i] + 1
else
x[i+1] = x[i]
end
end
end
return x
end
function yule_simon_deviate(rho, n)
x = zeros(Int, n)
mu = rho / (rho - 1)
x[1] = max(round(Int, mu), 1)
for i = 1:(n-1)
u = rand(2)
if x[i] == 1
if u[1] < 1 / (2 * (rho + 2))
x[i+1] = 2
else
x[i+1] = 1
end
elseif u[1] < 1 / 2
if u[2] < min((x[i] + rho) / (x[i] - 1), 1.0)
x[i+1] = x[i] - 1
else
x[i+1] = x[i]
end
else
if u[2] < x[i] / (x[i] + rho + 1)
x[i+1] = x[i] + 1
else
x[i+1] = x[i]
end
end
end
return x
end
Random.seed!(12345)
# result containers
den = String[]
par = Vector{Float64}[]
est = Vector{Float64}[]
its = Int[]
sec = Float64[]
#
# Yule-Simon distribution
#
push!(den, "Yule-Simon")
(m, rho) = (1000, 3.0)
push!(par, [rho])
x = yule_simon_deviate(rho, m)
(rho, iters) = mle_yule_simon(x)
println("Yule-Simon & ", rho, " & ", iters)
push!(est, [rho])
bm = @benchmark mle_yule_simon($x)
display(bm)
push!(its, iters)
push!(sec, median(bm.times) / 1e6)
#
# Negative binomial distribution
#
push!(den, "Negative binomial")
push!(den, "Negative binomial")
(m, p, r) = (1000, 0.25, 5.0);
push!(par, [p, r])
push!(par, [p, r])
x = rand(NegativeBinomial(r, p), m);
avg = mean(x);
ssq = var(x);
@time (p, r, iters) = mle_negative_binomial(x)
println("Negative binomial & ", p, " ", r, " & ", iters)
push!(est, [p, r])
push!(its, iters)
bm = @benchmark mle_negative_binomial($x)
display(bm)
push!(sec, median(bm.times) / 1e6)
@time (p, r, iters) = mle_negative_binomial2(x)
push!(est, [p, r])
push!(its, iters)
println("Negative binomial & ", p, " ", r, " & ", iters)
bm = @benchmark mle_negative_binomial2($x)
display(bm)
push!(sec, median(bm.times) / 1e6)
(p, r) = (avg/ssq, avg^2/(ssq-avg))
#
# Logarithmic distribution
#
push!(den, "Logarithmic")
(m, p, q) = (1000, 1, 0.4);
push!(par, [q])
x = logarithmic_deviate(q, m);
@time (q, iters) = mle_logarithmic(x)
push!(est, [q])
push!(its, iters)
println("logarithmic & ", q, " & ", iters)
bm = @benchmark mle_logarithmic($x)
display(bm)
push!(sec, median(bm.times) / 1e6)
#
# Cauchy distribution
#
push!(den, "Cauchy")
(m, p) = (1000, 2);
(mu, sigma) = (1.0, 1.0)
push!(par, [mu, sigma])
x = rand(Cauchy(mu, sigma), m);
@time (mu, sigma, iters) = mle_Cauchy(x)
push!(est, [mu, sigma])
push!(its, iters)
println("Cauchy & ", mu, " ", sigma, " & ", iters)
bm = @benchmark mle_Cauchy($x)
display(bm)
push!(sec, median(bm.times) / 1e6)
#
# Gumbel distribution
#
push!(den, "Gumbel")
push!(den, "Gumbel")
(m, p) = (1000, 2)
(beta, mu) = (2.0, 0.5)
push!(par, [beta, mu])
push!(par, [beta, mu])
x = rand(Gumbel(mu, beta), m);
@time (beta, mu, iters) = mle_gumbel(x)
push!(est, [beta, mu])
push!(its, iters)
println("Gumbel & ", beta, " ", mu, " & ", iters)
bm = @benchmark mle_gumbel($x)
display(bm)
push!(sec, median(bm.times) / 1e6)
@time (beta, mu, iters) = mle_gumbel2(x)
push!(est, [beta, mu])
push!(its, iters)
println("Gumbel & ", beta, " ", mu, " & ", iters)
bm = @benchmark mle_gumbel2($x)
display(bm)
push!(sec, median(bm.times) / 1e6)
sqrt(6 * var(x) / pi^2)
#
# Weibull distribution
#
push!(den, "Weibull")
(m, p) = (1000, 2);
(kappa, lambda) = (2.0, 3.0);
push!(par, [kappa, lambda])
x = rand(Weibull(kappa, lambda), m);
@time (kappa, lambda, iters) = mle_weibull(x)
push!(est, [kappa, lambda])
push!(its, iters)
println("Weibull & ", kappa, " ", lambda, " & ", iters)
bm = @benchmark mle_weibull($x)
display(bm)
push!(sec, median(bm.times) / 1e6)
#
# Rice distribution
#
push!(den, "Rice")
(m, p) = (1000, 2)
(nu, sigmasq) = (2.0, 3.0)
push!(par, [nu, sigmasq])
x = rand(Rician(nu, sqrt(sigmasq)), m)
@time (nu, sigmasq, iters) = mle_rice(x)
push!(est, [nu, sigmasq])
push!(its, iters)
println("Rice & ", nu, " ", sigmasq, " & ", iters)
bm = @benchmark mle_rice($x)
display(bm)
push!(sec, median(bm.times) / 1e6)
#
# Dirichlet distribution
#
push!(den, "Dirichlet")
(m, p) = (1000, 3);
lambda = [1 / 3, 1 / 3, 1 / 3];
push!(par, lambda)
x = rand(Dirichlet(lambda), m);
@time (lambda, iters) = mle_dirichlet(x)
push!(est, lambda)
push!(its, iters)
println("Dirichlet & ", lambda, " & ", iters)
bm = @benchmark mle_dirichlet($x)
display(bm)
push!(sec, median(bm.times) / 1e6)
#
# Inverse gamma distribution
#
push!(den, "Inverse gamma")
(m, p) = (1000, 2)
(alpha, beta) = (2.0, 3.0)
push!(par, [alpha, beta])
x = rand(InverseGamma(alpha, beta), m);
@time (alpha, beta, iters) = mle_inverse_gamma(x)
push!(est, [alpha, beta])
push!(its, iters)
println("Inverse gamma & ", alpha, " ", beta, " & ", iters)
bm = @benchmark mle_inverse_gamma($x)
display(bm)
push!(sec, median(bm.times) / 1e6)
#
# Gamma distribution
#
push!(den, "Gamma")
push!(den, "Gamma")
(m, p) = (1000, 2)
(alpha, beta) = (2.0, 3.0)
push!(par, [alpha, beta])
push!(par, [alpha, beta])
x = rand(Gamma(alpha, 1 / beta), m);
# method 1 based on Stirling's approximation
@time (alpha, beta, iters) = mle_gamma(x)
push!(est, [alpha, beta])
push!(its, iters)
println("Gamma & ", alpha, " ", beta, " & ", iters)
bm = @benchmark mle_gamma($x)
display(bm)
push!(sec, median(bm.times) / 1e6)
# method 1 based on QLB MM algorithm
@time (alpha, beta, iters) = mle_gamma1(x)
push!(est, [alpha, beta])
push!(its, iters)
println("Gamma & ", alpha, " ", beta, " & ", iters)
bm = @benchmark mle_gamma1($x)
display(bm)
push!(sec, median(bm.times) / 1e6)
results = DataFrame(
Density=den,
Parameters=par,
Estimate=est,
Iterations=its,
Time=sec
)
# display(results)
pretty_table(
results,
header=["Density", "Parameters", "Estimate", "Iterations", "Time (ms)"],
formatters=(v, i, j) -> (j == 2 || j == 3) ? round.(v, digits=3) : (j == 5 ? round(v, digits=3) : v)
)
# LaTeX table for the paper
pretty_table(
results,
header=["Density", "Parameters", "Estimate", "Iterations", "Time (ms)"],
formatters=(v, i, j) -> (j == 2 || j == 3) ? round.(v, digits=3) : (j == 5 ? round(v, digits=3) : v),
backend = Val(:latex),
vlines = :all,
alignment = :c,
compact_printing = false
)