|
| 1 | +""" |
| 2 | +Return any binary tree that matches the given preorder and postorder traversals. |
| 3 | +
|
| 4 | +Values in the traversals pre and post are distinct positive integers. |
| 5 | +
|
| 6 | + |
| 7 | +
|
| 8 | +Example 1: |
| 9 | +
|
| 10 | +Input: pre = [1,2,4,5,3,6,7], post = [4,5,2,6,7,3,1] |
| 11 | +Output: [1,2,3,4,5,6,7] |
| 12 | + |
| 13 | +
|
| 14 | +Note: |
| 15 | +
|
| 16 | +1 <= pre.length == post.length <= 30 |
| 17 | +pre[] and post[] are both permutations of 1, 2, ..., pre.length. |
| 18 | +It is guaranteed an answer exists. If there exists multiple answers, you can return any of them. |
| 19 | +
|
| 20 | +根据二叉树的 前序和后序遍历,返回一颗完整的二叉树。 |
| 21 | +
|
| 22 | +不唯一,返回随便一个即可。 |
| 23 | +
|
| 24 | +思路: |
| 25 | +1. 二叉树的前序是 根左右。 |
| 26 | +2. 二叉树的后序是 左右根。 |
| 27 | +
|
| 28 | +在前序中确定 根 ,然后在后序中找左右子树。 |
| 29 | +
|
| 30 | +pre = [1,2,4,5,3,6,7] |
| 31 | +post = [4,5,2,6,7,3,1] |
| 32 | +
|
| 33 | +总根是 1 |
| 34 | +
|
| 35 | +1的左右其中一个是 2,就当它是左子树好了,因为是 根 左右 所以假设的话就先假设为左子树,如果只有一边的话,左右其实无所谓。 |
| 36 | +
|
| 37 | + 1 |
| 38 | + / |
| 39 | +2 |
| 40 | +
|
| 41 | +然后在 post 中找属于 2 这个子树的节点。 |
| 42 | +找到 4 5 2,那么剩下的 6 7 3 就是与之相对的 1 的右子树了。 |
| 43 | +
|
| 44 | +把 pre 分成 [2, 4, 5] [3, 6, 7] |
| 45 | + post 分为 [4, 5, 2] [6, 7 ,3] |
| 46 | +
|
| 47 | +这样 作为1的左右两颗子树已经出来了。 |
| 48 | +pre[left] 和 pre[right] 的 0 分别为 左右两棵子树的根。 |
| 49 | +
|
| 50 | +之后就是分别把左右两边的这两个代替原来的 pre post,根也同样代替,然后递归直到没有即可。 |
| 51 | +
|
| 52 | +测试链接: |
| 53 | +https://leetcode.com/contest/weekly-contest-98/problems/construct-binary-tree-from-preorder-and-postorder-traversal/ |
| 54 | +
|
| 55 | +beat 50% 40ms. |
| 56 | +
|
| 57 | +这应该是自己的极限了。 |
| 58 | +4道题 一个半小时做 3 道题,1 easy 2 medium 0 hard. |
| 59 | +
|
| 60 | +
|
| 61 | +""" |
| 62 | + |
| 63 | +# Definition for a binary tree node. |
| 64 | +# class TreeNode(object): |
| 65 | +# def __init__(self, x): |
| 66 | +# self.val = x |
| 67 | +# self.left = None |
| 68 | +# self.right = None |
| 69 | + |
| 70 | +class Solution(object): |
| 71 | + def constructFromPrePost(self, pre, post): |
| 72 | + """ |
| 73 | + :type pre: List[int] |
| 74 | + :type post: List[int] |
| 75 | + :rtype: TreeNode |
| 76 | + """ |
| 77 | + |
| 78 | + def getLeftAndRight(pre, post): |
| 79 | + # no more node. |
| 80 | + if not pre: |
| 81 | + return None |
| 82 | + |
| 83 | + # Get the index of the left root. |
| 84 | + index = post.index(pre[0]) |
| 85 | + |
| 86 | + # post left tree |
| 87 | + val_children = post[:index+1] |
| 88 | + |
| 89 | + # post right tree |
| 90 | + val_brother = post[index+1:-1] |
| 91 | + |
| 92 | + # pre left tree |
| 93 | + # Get the left tree pre list |
| 94 | + # if left tree post list contains 3 elements |
| 95 | + # then we will get equal in pre list. |
| 96 | + t = len(val_children) |
| 97 | + pre_val_children = pre[:t] |
| 98 | + |
| 99 | + # there is right tree. |
| 100 | + # The elements are the rest of pre list. |
| 101 | + pre_val_brother = pre[t:] |
| 102 | + |
| 103 | + left = pre[0] |
| 104 | + |
| 105 | + right = val_brother[-1] if val_brother else None |
| 106 | + |
| 107 | + # left, right, pre, post |
| 108 | + return (left, right, pre_val_children, val_children, pre_val_brother, val_brother) |
| 109 | + |
| 110 | + def construct(root, pre, post): |
| 111 | + x = getLeftAndRight(pre[1:], post) |
| 112 | + if root and x: |
| 113 | + if x[0] is not None: |
| 114 | + root.left = TreeNode(x[0]) |
| 115 | + if x[1] is not None: |
| 116 | + root.right = TreeNode(x[1]) |
| 117 | + |
| 118 | + if root.left: |
| 119 | + construct(root.left, x[2], x[3]) |
| 120 | + |
| 121 | + if root.right: |
| 122 | + construct(root.right, x[4], x[5]) |
| 123 | + |
| 124 | + allRoot = TreeNode(pre[0]) |
| 125 | + construct(allRoot, pre, post) |
| 126 | + |
| 127 | + return allRoot |
| 128 | + |
0 commit comments