-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMPU9250.cpp
733 lines (620 loc) · 35.6 KB
/
MPU9250.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
/* 06/16/2017 Copyright Tlera Corporation
*
* Created by Kris Winer
*
Demonstrate basic MPU-9250 functionality including parameterizing the register addresses, initializing the sensor,
getting properly scaled accelerometer, gyroscope, and magnetometer data out.
Addition of 9 DoF sensor fusion using open source Madgwick filter algorithm.
Sketch runs on the 3.3 V Dragonfly STM32L476 Breakout Board.
Library may be used freely and without limit with attribution.
*/
#include "MPU9250.h"
#include "Wire.h"
MPU9250::MPU9250(uint8_t intPin)
{
uint8_t _intPin = intPin;
}
uint8_t MPU9250::getMPU9250ID(uint8_t MPUnum)
{
uint8_t c = readByte(MPUnum, WHO_AM_I_MPU9250); // Read WHO_AM_I register for MPU-9250
return c;
}
uint8_t MPU9250::getAK8963CID(uint8_t MPUnum)
{
// uint8_t c = readByte(AK8963_ADDRESS, WHO_AM_I_AK8963); // Read WHO_AM_I register for MPU-9250
writeByte(MPUnum, USER_CTRL, 0x20); // Enable I2C Master mode
writeByte(MPUnum, I2C_MST_CTRL, 0x0D); // I2C configuration multi-master I2C 400KHz
writeByte(MPUnum, I2C_SLV0_ADDR, AK8963_ADDRESS | 0x80); // Set the I2C slave address of AK8963 and set for read.
writeByte(MPUnum, I2C_SLV0_REG, WHO_AM_I_AK8963); // I2C slave 0 register address from where to begin data transfer
writeByte(MPUnum, I2C_SLV0_CTRL, 0x81); // Enable I2C and transfer 1 byte
delay(10);
uint8_t c = readByte(MPUnum, EXT_SENS_DATA_00); // Read the WHO_AM_I byte
return c;
}
float MPU9250::getMres(uint8_t Mscale) {
switch (Mscale)
{
// Possible magnetometer scales (and their register bit settings) are:
// 14 bit resolution (0) and 16 bit resolution (1)
case MFS_14BITS:
_mRes = 10.0f*4912.0f/8190.0f; // Proper scale to return milliGauss
return _mRes;
break;
case MFS_16BITS:
_mRes = 10.0f*4912.0f/32760.0f; // Proper scale to return milliGauss
return _mRes;
break;
}
}
float MPU9250::getGres(uint8_t Gscale) {
switch (Gscale)
{
// Possible gyro scales (and their register bit settings) are:
// 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11).
case GFS_250DPS:
_gRes = 250.0/32768.0;
return _gRes;
break;
case GFS_500DPS:
_gRes = 500.0/32768.0;
return _gRes;
break;
case GFS_1000DPS:
_gRes = 1000.0/32768.0;
return _gRes;
break;
case GFS_2000DPS:
_gRes = 2000.0/32768.0;
return _gRes;
break;
}
}
float MPU9250::getAres(uint8_t Ascale) {
switch (Ascale)
{
// Possible accelerometer scales (and their register bit settings) are:
// 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11).
// Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
case AFS_2G:
_aRes = 2.0f/32768.0f;
return _aRes;
break;
case AFS_4G:
_aRes = 4.0f/32768.0f;
return _aRes;
break;
case AFS_8G:
_aRes = 8.0f/32768.0f;
return _aRes;
break;
case AFS_16G:
_aRes = 16.0f/32768.0f;
return _aRes;
break;
}
}
void MPU9250::accelWakeOnMotion(uint8_t MPUnum)
{
// Set accelerometer sample rate configuration
// It is possible to get a 4 kHz sample rate from the accelerometer by choosing 1 for
// accel_fchoice_b bit [3]; in this case the bandwidth is 1.13 kHz
uint8_t c = readByte(MPUnum, ACCEL_CONFIG2); // get current ACCEL_CONFIG2 register value
c = c & ~0x0F; // Clear accel_fchoice_b (bit 3) and A_DLPFG (bits [2:0])
c = c | 0x01; // Set accelerometer rate to 1 kHz and bandwidth to 184 Hz
writeByte(MPUnum, ACCEL_CONFIG2, c); // Write new ACCEL_CONFIG2 register value
// Configure Interrupts and Bypass Enable
// Set interrupt pin active high, push-pull, hold interrupt pin level HIGH until interrupt cleared,
// clear on read of INT_STATUS, and enable I2C_BYPASS_EN so additional chips
// can join the I2C bus and all can be controlled by the Arduino as master
writeByte(MPUnum, INT_PIN_CFG, 0x12); // INT is 50 microsecond pulse and any read to clear
writeByte(MPUnum, INT_ENABLE, 0x41); // Enable data ready (bit 0) and wake on motion (bit 6) interrupt
// enable wake on motion detection logic (bit 7) and compare current sample to previous sample (bit 6)
writeByte(MPUnum, MOT_DETECT_CTRL, 0xC0);
// set accel threshold for wake up at mG per LSB, 1 - 255 LSBs == 0 - 1020 mg), pic 0x19 for 25 mg
writeByte(MPUnum, WOM_THR, 0x19);
// set sample rate in low power mode
/* choices are 0 == 0.24 Hz, 1 == 0.49 Hz, 2 == 0.98 Hz, 3 == 1.958 Hz, 4 == 3.91 Hz, 5 == 7.81 Hz
* 6 == 15.63 Hz, 7 == 31.25 Hz, 8 == 62.50 Hz, 9 = 125 Hz, 10 == 250 Hz, and 11 == 500 Hz
*/
writeByte(MPUnum, LP_ACCEL_ODR, 0x02);
c = readByte(MPUnum, PWR_MGMT_1);
writeByte(MPUnum, PWR_MGMT_1, c | 0x20); // Write bit 5 to enable accel cycling
gyromagSleep(MPUnum);
delay(100); // Wait for all registers to reset
}
void MPU9250::gyromagSleep(uint8_t MPUnum)
{
uint8_t temp = 0;
writeByte(MPUnum, I2C_SLV0_ADDR, AK8963_ADDRESS | 0x80); // Set the I2C slave address of AK8963 and set for read.
writeByte(MPUnum, I2C_SLV0_REG, AK8963_CNTL); // I2C slave 0 register address from where to begin data transfer
writeByte(MPUnum, I2C_SLV0_CTRL, 0x81); // Enable I2C and transfer 1 byte
delay(10);
temp = readByte(MPUnum, EXT_SENS_DATA_00);
writeByte(MPUnum, I2C_SLV0_ADDR, AK8963_ADDRESS); // Set the I2C slave address of AK8963 and set for write.
writeByte(MPUnum, I2C_SLV0_REG, AK8963_CNTL); // I2C slave 0 register address from where to begin data transfer
writeByte(MPUnum, I2C_SLV0_DO, temp & ~(0x0F)); // Power down AK8963
writeByte(MPUnum, I2C_SLV0_CTRL, 0x81); // Enable I2C and transfer 1 byte
delay(10);
temp = readByte(MPUnum, PWR_MGMT_1);
writeByte(MPUnum, PWR_MGMT_1, temp | 0x10); // Write bit 4 to enable gyro standby
delay(10); // Wait for all registers to reset
}
void MPU9250::gyromagWake(uint8_t MPUnum, uint8_t Mmode)
{
uint8_t temp = 0;
writeByte(MPUnum, I2C_SLV0_ADDR, AK8963_ADDRESS | 0x80); // Set the I2C slave address of AK8963 and set for read.
writeByte(MPUnum, I2C_SLV0_REG, AK8963_CNTL); // I2C slave 0 register address from where to begin data transfer
writeByte(MPUnum, I2C_SLV0_CTRL, 0x81); // Enable I2C and transfer 1 byte
delay(10);
temp = readByte(MPUnum, EXT_SENS_DATA_00);
writeByte(MPUnum, I2C_SLV0_ADDR, AK8963_ADDRESS); // Set the I2C slave address of AK8963 and set for write.
writeByte(MPUnum, I2C_SLV0_REG, AK8963_CNTL); // I2C slave 0 register address from where to begin data transfer
writeByte(MPUnum, I2C_SLV0_DO, temp | Mmode); // Reset normal mode for magnetometer
writeByte(MPUnum, I2C_SLV0_CTRL, 0x81); // Enable I2C and transfer 1 byte
delay(10);
temp = readByte(MPUnum, PWR_MGMT_1);
writeByte(MPUnum, PWR_MGMT_1, 0x01); // return gyro and accel normal mode
delay(10); // Wait for all registers to reset
}
void MPU9250::resetMPU9250(uint8_t MPUnum)
{
// reset device
writeByte(MPUnum, PWR_MGMT_1, 0x80); // Set bit 7 to reset MPU9250
delay(100); // Wait for all registers to reset
}
void MPU9250::readMPU9250Data(uint8_t MPUnum, int16_t * destination)
{
uint8_t rawData[14]; // x/y/z accel register data stored here
readBytes(MPUnum, ACCEL_XOUT_H, 14, &rawData[0]); // Read the 14 raw data registers into data array
destination[0] = ((int16_t)rawData[0] << 8) | rawData[1] ; // Turn the MSB and LSB into a signed 16-bit value
destination[1] = ((int16_t)rawData[2] << 8) | rawData[3] ;
destination[2] = ((int16_t)rawData[4] << 8) | rawData[5] ;
destination[3] = ((int16_t)rawData[6] << 8) | rawData[7] ;
destination[4] = ((int16_t)rawData[8] << 8) | rawData[9] ;
destination[5] = ((int16_t)rawData[10] << 8) | rawData[11] ;
destination[6] = ((int16_t)rawData[12] << 8) | rawData[13] ;
}
void MPU9250::readAccelData(uint8_t MPUnum, int16_t * destination)
{
uint8_t rawData[6]; // x/y/z accel register data stored here
readBytes(MPUnum, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
destination[0] = ((int16_t)rawData[0] << 8) | rawData[1] ; // Turn the MSB and LSB into a signed 16-bit value
destination[1] = ((int16_t)rawData[2] << 8) | rawData[3] ;
destination[2] = ((int16_t)rawData[4] << 8) | rawData[5] ;
}
void MPU9250::readGyroData(uint8_t MPUnum, int16_t * destination)
{
uint8_t rawData[6]; // x/y/z gyro register data stored here
readBytes(MPUnum, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
destination[0] = ((int16_t)rawData[0] << 8) | rawData[1] ; // Turn the MSB and LSB into a signed 16-bit value
destination[1] = ((int16_t)rawData[2] << 8) | rawData[3] ;
destination[2] = ((int16_t)rawData[4] << 8) | rawData[5] ;
}
bool MPU9250::checkNewMagData(uint8_t MPUnum)
{
bool test;
// test = (readByte(AK8963_ADDRESS, AK8963_ST1) & 0x01);
writeByte(MPUnum, I2C_SLV0_ADDR, AK8963_ADDRESS | 0x80); // Set the I2C slave address of AK8963 and set for read.
writeByte(MPUnum, I2C_SLV0_REG, AK8963_ST1); // I2C slave 0 register address from where to begin data transfer
writeByte(MPUnum, I2C_SLV0_CTRL, 0x81); // Enable I2C and transfer 1 byte
delay(2);
test = (readByte(MPUnum, EXT_SENS_DATA_00) & 0x01); // Check data ready status byte
return test;
}
bool MPU9250::checkNewAccelGyroData(uint8_t MPUnum)
{
bool test;
test = (readByte(MPUnum, INT_STATUS) & 0x01);
return test;
}
bool MPU9250::checkWakeOnMotion(uint8_t MPUnum)
{
bool test;
test = (readByte(MPUnum, INT_STATUS) & 0x40);
return test;
}
void MPU9250::readMagData(uint8_t MPUnum, int16_t * destination)
{
uint8_t rawData[7]; // x/y/z gyro register data, ST2 register stored here, must read ST2 at end of data acquisition
// readBytes(AK8963_ADDRESS, AK8963_XOUT_L, 7, &rawData[0]); // Read the six raw data and ST2 registers sequentially into data array
writeByte(MPUnum, I2C_SLV0_ADDR, AK8963_ADDRESS | 0x80); // Set the I2C slave address of AK8963 and set for read.
writeByte(MPUnum, I2C_SLV0_REG, AK8963_XOUT_L); // I2C slave 0 register address from where to begin data transfer
writeByte(MPUnum, I2C_SLV0_CTRL, 0x87); // Enable I2C and read 7 bytes
// delay(10);
readBytes(MPUnum, EXT_SENS_DATA_00, 7, &rawData[0]); // Read the x-, y-, and z-axis calibration values
uint8_t c = rawData[6]; // End data read by reading ST2 register
if(!(c & 0x08)) { // Check if magnetic sensor overflow set, if not then report data
destination[0] = ((int16_t)rawData[1] << 8) | rawData[0] ; // Turn the MSB and LSB into a signed 16-bit value
destination[1] = ((int16_t)rawData[3] << 8) | rawData[2] ; // Data stored as little Endian
destination[2] = ((int16_t)rawData[5] << 8) | rawData[4] ;
}
}
int16_t MPU9250::readGyroTempData(uint8_t MPUnum)
{
uint8_t rawData[2]; // x/y/z gyro register data stored here
readBytes(MPUnum, TEMP_OUT_H, 2, &rawData[0]); // Read the two raw data registers sequentially into data array
return ((int16_t)rawData[0] << 8) | rawData[1] ; // Turn the MSB and LSB into a 16-bit value
}
void MPU9250::initAK8963Slave(uint8_t MPUnum, uint8_t Mscale, uint8_t Mmode, float * magCalibration)
{
// First extract the factory calibration for each magnetometer axis
uint8_t rawData[3]; // x/y/z gyro calibration data stored here
_Mmode = Mmode;
writeByte(MPUnum, I2C_SLV0_ADDR, AK8963_ADDRESS); // Set the I2C slave address of AK8963 and set for write.
writeByte(MPUnum, I2C_SLV0_REG, AK8963_CNTL2); // I2C slave 0 register address from where to begin data transfer
writeByte(MPUnum, I2C_SLV0_DO, 0x01); // Reset AK8963
writeByte(MPUnum, I2C_SLV0_CTRL, 0x81); // Enable I2C and write 1 byte
delay(50);
writeByte(MPUnum, I2C_SLV0_ADDR, AK8963_ADDRESS); // Set the I2C slave address of AK8963 and set for write.
writeByte(MPUnum, I2C_SLV0_REG, AK8963_CNTL); // I2C slave 0 register address from where to begin data transfer
writeByte(MPUnum, I2C_SLV0_DO, 0x00); // Power down magnetometer
writeByte(MPUnum, I2C_SLV0_CTRL, 0x81); // Enable I2C and write 1 byte
delay(50);
writeByte(MPUnum, I2C_SLV0_ADDR, AK8963_ADDRESS); // Set the I2C slave address of AK8963 and set for write.
writeByte(MPUnum, I2C_SLV0_REG, AK8963_CNTL); // I2C slave 0 register address from where to begin data transfer
writeByte(MPUnum, I2C_SLV0_DO, 0x0F); // Enter fuze mode
writeByte(MPUnum, I2C_SLV0_CTRL, 0x81); // Enable I2C and write 1 byte
delay(50);
writeByte(MPUnum, I2C_SLV0_ADDR, AK8963_ADDRESS | 0x80); // Set the I2C slave address of AK8963 and set for read.
writeByte(MPUnum, I2C_SLV0_REG, AK8963_ASAX); // I2C slave 0 register address from where to begin data transfer
writeByte(MPUnum, I2C_SLV0_CTRL, 0x83); // Enable I2C and read 3 bytes
delay(50);
readBytes(MPUnum, EXT_SENS_DATA_00, 3, &rawData[0]); // Read the x-, y-, and z-axis calibration values
magCalibration[0] = (float)(rawData[0] - 128)/256.0f + 1.0f; // Return x-axis sensitivity adjustment values, etc.
magCalibration[1] = (float)(rawData[1] - 128)/256.0f + 1.0f;
magCalibration[2] = (float)(rawData[2] - 128)/256.0f + 1.0f;
writeByte(MPUnum, I2C_SLV0_ADDR, AK8963_ADDRESS); // Set the I2C slave address of AK8963 and set for write.
writeByte(MPUnum, I2C_SLV0_REG, AK8963_CNTL); // I2C slave 0 register address from where to begin data transfer
writeByte(MPUnum, I2C_SLV0_DO, 0x00); // Power down magnetometer
writeByte(MPUnum, I2C_SLV0_CTRL, 0x81); // Enable I2C and transfer 1 byte
delay(50);
writeByte(MPUnum, I2C_SLV0_ADDR, AK8963_ADDRESS); // Set the I2C slave address of AK8963 and set for write.
writeByte(MPUnum, I2C_SLV0_REG, AK8963_CNTL); // I2C slave 0 register address from where to begin data transfer
// Configure the magnetometer for continuous read and highest resolution
// set Mscale bit 4 to 1 (0) to enable 16 (14) bit resolution in CNTL register,
// and enable continuous mode data acquisition Mmode (bits [3:0]), 0010 for 8 Hz and 0110 for 100 Hz sample rates
writeByte(MPUnum, I2C_SLV0_DO, Mscale << 4 | Mmode); // Set magnetometer data resolution and sample ODR
writeByte(MPUnum, I2C_SLV0_CTRL, 0x81); // Enable I2C and transfer 1 byte
delay(50);
}
void MPU9250::initMPU9250(uint8_t MPUnum, uint8_t Ascale, uint8_t Gscale, uint8_t sampleRate)
{
// wake up device
writeByte(MPUnum, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors
delay(100); // Wait for all registers to reset
// get stable time source
writeByte(MPUnum, PWR_MGMT_1, 0x01); // Auto select clock source to be PLL gyroscope reference if ready else
delay(200);
// Configure Gyro and Thermometer
// Disable FSYNC and set thermometer and gyro bandwidth to 41 and 42 Hz, respectively;
// minimum delay time for this setting is 5.9 ms, which means sensor fusion update rates cannot
// be higher than 1 / 0.0059 = 170 Hz
// DLPF_CFG = bits 2:0 = 011; this limits the sample rate to 1000 Hz for both
// With the MPU9250, it is possible to get gyro sample rates of 32 kHz (!), 8 kHz, or 1 kHz
writeByte(MPUnum, CONFIG, 0x03);
// Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV)
writeByte(MPUnum, SMPLRT_DIV, sampleRate); // Use a 200 Hz rate; a rate consistent with the filter update rate
// determined inset in CONFIG above
// Set gyroscope full scale range
// Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3
uint8_t c = readByte(MPUnum, GYRO_CONFIG); // get current GYRO_CONFIG register value
// c = c & ~0xE0; // Clear self-test bits [7:5]
c = c & ~0x02; // Clear Fchoice bits [1:0]
c = c & ~0x18; // Clear AFS bits [4:3]
c = c | Gscale << 3; // Set full scale range for the gyro
// c =| 0x00; // Set Fchoice for the gyro to 11 by writing its inverse to bits 1:0 of GYRO_CONFIG
writeByte(MPUnum, GYRO_CONFIG, c ); // Write new GYRO_CONFIG value to register
// Set accelerometer full-scale range configuration
c = readByte(MPUnum, ACCEL_CONFIG); // get current ACCEL_CONFIG register value
// c = c & ~0xE0; // Clear self-test bits [7:5]
c = c & ~0x18; // Clear AFS bits [4:3]
c = c | Ascale << 3; // Set full scale range for the accelerometer
writeByte(MPUnum, ACCEL_CONFIG, c); // Write new ACCEL_CONFIG register value
// Set accelerometer sample rate configuration
// It is possible to get a 4 kHz sample rate from the accelerometer by choosing 1 for
// accel_fchoice_b bit [3]; in this case the bandwidth is 1.13 kHz
c = readByte(MPUnum, ACCEL_CONFIG2); // get current ACCEL_CONFIG2 register value
c = c & ~0x0F; // Clear accel_fchoice_b (bit 3) and A_DLPFG (bits [2:0])
c = c | 0x03; // Set accelerometer rate to 1 kHz and bandwidth to 41 Hz
writeByte(MPUnum, ACCEL_CONFIG2, c); // Write new ACCEL_CONFIG2 register value
// The accelerometer, gyro, and thermometer are set to 1 kHz sample rates,
// but all these rates are further reduced by a factor of 5 to 200 Hz because of the SMPLRT_DIV setting
// Configure Interrupts and Bypass Enable
// Set interrupt pin active high, push-pull, hold interrupt pin level HIGH until interrupt cleared,
// clear on read of INT_STATUS, and enable I2C_BYPASS_EN so additional chips
// can join the I2C bus and all can be controlled by the Arduino as master
writeByte(MPUnum, INT_PIN_CFG, 0x10); // INT is 50 microsecond pulse and any read to clear
writeByte(MPUnum, INT_ENABLE, 0x01); // Enable data ready (bit 0) interrupt
delay(100);
writeByte(MPUnum, USER_CTRL, 0x20); // Enable I2C Master mode
writeByte(MPUnum, I2C_MST_CTRL, 0x1D); // I2C configuration STOP after each transaction, master I2C bus at 400 KHz
writeByte(MPUnum, I2C_MST_DELAY_CTRL, 0x81); // Use blocking data retreival and enable delay for mag sample rate mismatch
writeByte(MPUnum, I2C_SLV4_CTRL, 0x01); // Delay mag data retrieval to once every other accel/gyro data sample
}
void MPU9250::magcalMPU9250(uint8_t MPUnum, float * dest1, float * dest2)
{
uint16_t ii = 0, sample_count = 0;
int32_t mag_bias[3] = {0, 0, 0}, mag_scale[3] = {0, 0, 0};
int16_t mag_max[3] = {-32767, -32767, -32767}, mag_min[3] = {32767, 32767, 32767}, mag_temp[3] = {0, 0, 0};
uint8_t rawData[7] = {0, 0, 0, 0, 0, 0, 0}, magCalibration[3] = {0, 0, 0};
Serial.print("Mag Calibration for: 0x"); Serial.println(MPUnum, HEX); Serial.println("Wave device in a figure eight until done!");
delay(4000);
// shoot for ~fifteen seconds of mag data
if(_Mmode == 0x02) sample_count = 128; // at 8 Hz ODR, new mag data is available every 125 ms
if(_Mmode == 0x06) sample_count = 1500; // at 100 Hz ODR, new mag data is available every 10 ms
for(ii = 0; ii < sample_count; ii++) {
writeByte(MPUnum, I2C_SLV0_ADDR, AK8963_ADDRESS | 0x80); // Set the I2C slave address of AK8963 and set for read.
writeByte(MPUnum, I2C_SLV0_REG, AK8963_XOUT_L); // I2C slave 0 register address from where to begin data transfer
writeByte(MPUnum, I2C_SLV0_CTRL, 0x87); // Enable I2C and read 7 bytes
if(_Mmode == 0x02) delay(125); // at 8 Hz ODR, new mag data is available every 125 ms
if(_Mmode == 0x06) delay(10); // at 100 Hz ODR, new mag data is available every 10 ms
readBytes(MPUnum, EXT_SENS_DATA_00, 7, &rawData[0]); // Read the x-, y-, and z-axis calibration values
mag_temp[0] = ((int16_t)rawData[1] << 8) | rawData[0] ; // Turn the MSB and LSB into a signed 16-bit value
mag_temp[1] = ((int16_t)rawData[3] << 8) | rawData[2] ; // Data stored as little Endian
mag_temp[2] = ((int16_t)rawData[5] << 8) | rawData[4] ;
for (int jj = 0; jj < 3; jj++) {
if(mag_temp[jj] > mag_max[jj]) mag_max[jj] = mag_temp[jj];
if(mag_temp[jj] < mag_min[jj]) mag_min[jj] = mag_temp[jj];
}
Serial.println(ii);
}
Serial.println("mag x min/max:"); Serial.println(mag_max[0]); Serial.println(mag_min[0]);
Serial.println("mag y min/max:"); Serial.println(mag_max[1]); Serial.println(mag_min[1]);
Serial.println("mag z min/max:"); Serial.println(mag_max[2]); Serial.println(mag_min[2]);
// Get hard iron correction
mag_bias[0] = (mag_max[0] + mag_min[0])/2; // get average x mag bias in counts
mag_bias[1] = (mag_max[1] + mag_min[1])/2; // get average y mag bias in counts
mag_bias[2] = (mag_max[2] + mag_min[2])/2; // get average z mag bias in counts
writeByte(MPUnum, I2C_SLV0_ADDR, AK8963_ADDRESS | 0x80); // Set the I2C slave address of AK8963 and set for read.
writeByte(MPUnum, I2C_SLV0_REG, AK8963_ASAX); // I2C slave 0 register address from where to begin data transfer
writeByte(MPUnum, I2C_SLV0_CTRL, 0x83); // Enable I2C and read 3 bytes
delay(50);
readBytes(MPUnum, EXT_SENS_DATA_00, 3, &rawData[0]); // Read the x-, y-, and z-axis calibration values
magCalibration[0] = (float)(rawData[0] - 128)/256.0f + 1.0f; // Return x-axis sensitivity adjustment values, etc.
magCalibration[1] = (float)(rawData[1] - 128)/256.0f + 1.0f;
magCalibration[2] = (float)(rawData[2] - 128)/256.0f + 1.0f;
dest1[0] = (float) mag_bias[0]*_mRes*magCalibration[0]; // save mag biases in G for main program
dest1[1] = (float) mag_bias[1]*_mRes*magCalibration[1];
dest1[2] = (float) mag_bias[2]*_mRes*magCalibration[2];
// Get soft iron correction estimate
mag_scale[0] = (mag_max[0] - mag_min[0])/2; // get average x axis max chord length in counts
mag_scale[1] = (mag_max[1] - mag_min[1])/2; // get average y axis max chord length in counts
mag_scale[2] = (mag_max[2] - mag_min[2])/2; // get average z axis max chord length in counts
float avg_rad = mag_scale[0] + mag_scale[1] + mag_scale[2];
avg_rad /= 3.0;
dest2[0] = avg_rad/((float)mag_scale[0]);
dest2[1] = avg_rad/((float)mag_scale[1]);
dest2[2] = avg_rad/((float)mag_scale[2]);
Serial.println("Mag Calibration done!");
}
// Function which accumulates gyro and accelerometer data after device initialization. It calculates the average
// of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers.
void MPU9250::calibrateMPU9250(uint8_t MPUnum, int32_t * dest1, float * dest2)
{
uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data
uint16_t ii, packet_count, fifo_count;
int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0};
// reset device
writeByte(MPUnum, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
delay(100);
// get stable time source; Auto select clock source to be PLL gyroscope reference if ready
// else use the internal oscillator, bits 2:0 = 001
writeByte(MPUnum, PWR_MGMT_1, 0x01);
writeByte(MPUnum, PWR_MGMT_2, 0x00);
delay(200);
// Configure device for bias calculation
writeByte(MPUnum, INT_ENABLE, 0x00); // Disable all interrupts
writeByte(MPUnum, FIFO_EN, 0x00); // Disable FIFO
writeByte(MPUnum, PWR_MGMT_1, 0x00); // Turn on internal clock source
writeByte(MPUnum, I2C_MST_CTRL, 0x00); // Disable I2C master
writeByte(MPUnum, USER_CTRL, 0x00); // Disable FIFO and I2C master modes
writeByte(MPUnum, USER_CTRL, 0x0C); // Reset FIFO and DMP
delay(15);
// Configure MPU6050 gyro and accelerometer for bias calculation
writeByte(MPUnum, CONFIG, 0x01); // Set low-pass filter to 188 Hz
writeByte(MPUnum, SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz
writeByte(MPUnum, GYRO_CONFIG, 0x00); // Set gyro full-scale to 250 degrees per second, maximum sensitivity
writeByte(MPUnum, ACCEL_CONFIG, 0x08); // Set accelerometer full-scale to 4 g, maximum sensitivity
uint16_t gyrosensitivity = 131; // = 131 LSB/degrees/sec
uint16_t accelsensitivity = 8192; // = 8192 LSB/g
// Configure FIFO to capture accelerometer and gyro data for bias calculation
writeByte(MPUnum, USER_CTRL, 0x40); // Enable FIFO
writeByte(MPUnum, FIFO_EN, 0x78); // Enable gyro and accelerometer sensors for FIFO (max size 512 bytes in MPU-9150)
delay(40); // accumulate 40 samples in 40 milliseconds = 480 bytes
// At end of sample accumulation, turn off FIFO sensor read
writeByte(MPUnum, FIFO_EN, 0x00); // Disable gyro and accelerometer sensors for FIFO
readBytes(MPUnum, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count
fifo_count = ((uint16_t)data[0] << 8) | data[1];
packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging
for (ii = 0; ii < packet_count; ii++) {
int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0};
readBytes(MPUnum, FIFO_R_W, 12, &data[0]); // read data for averaging
accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1] ) ; // Form signed 16-bit integer for each sample in FIFO
accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3] ) ;
accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5] ) ;
gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7] ) ;
gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9] ) ;
gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]) ;
accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
accel_bias[1] += (int32_t) accel_temp[1];
accel_bias[2] += (int32_t) accel_temp[2];
gyro_bias[0] += (int32_t) gyro_temp[0];
gyro_bias[1] += (int32_t) gyro_temp[1];
gyro_bias[2] += (int32_t) gyro_temp[2];
}
accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases
accel_bias[1] /= (int32_t) packet_count;
accel_bias[2] /= (int32_t) packet_count;
gyro_bias[0] /= (int32_t) packet_count;
gyro_bias[1] /= (int32_t) packet_count;
gyro_bias[2] /= (int32_t) packet_count;
if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;} // Remove gravity from the z-axis accelerometer bias calculation
else {accel_bias[2] += (int32_t) accelsensitivity;}
// Output scaled gyro biases for display in the main program
if (dest1)
{
dest1[0] = gyro_bias[0];
dest1[1] = gyro_bias[1];
dest1[2] = gyro_bias[2];
}
// Output scaled accelerometer biases for display in the main program
if (dest2)
{
dest2[0] = (float)accel_bias[0] / (float)accelsensitivity;
dest2[1] = (float)accel_bias[1] / (float)accelsensitivity;
dest2[2] = (float)accel_bias[2] / (float)accelsensitivity;
}
}
void MPU9250::GyroBiasWriteToReg(uint8_t MPUnum, int32_t *gyro_bias)
{
uint8_t data[12];
// Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup
data[0] = (-gyro_bias[0] / 4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
data[1] = (-gyro_bias[0] / 4) & 0xFF; // Biases are additive, so change sign on calculated average gyro biases
data[2] = (-gyro_bias[1] / 4 >> 8) & 0xFF;
data[3] = (-gyro_bias[1] / 4) & 0xFF;
data[4] = (-gyro_bias[2] / 4 >> 8) & 0xFF;
data[5] = (-gyro_bias[2] / 4) & 0xFF;
// Push gyro biases to hardware registers
writeByte(MPUnum, XG_OFFSET_H, data[0]);
writeByte(MPUnum, XG_OFFSET_L, data[1]);
writeByte(MPUnum, YG_OFFSET_H, data[2]);
writeByte(MPUnum, YG_OFFSET_L, data[3]);
writeByte(MPUnum, ZG_OFFSET_H, data[4]);
writeByte(MPUnum, ZG_OFFSET_L, data[5]);
}
// Accelerometer and gyroscope self test; check calibration wrt factory settings
void MPU9250::SelfTest(uint8_t MPUnum, float * destination) // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass
{
uint8_t rawData[6] = {0, 0, 0, 0, 0, 0};
uint8_t selfTest[6];
int32_t gAvg[3] = {0}, aAvg[3] = {0}, aSTAvg[3] = {0}, gSTAvg[3] = {0};
float factoryTrim[6];
uint8_t FS = 0;
writeByte(MPUnum, SMPLRT_DIV, 0x00); // Set gyro sample rate to 1 kHz
writeByte(MPUnum, CONFIG, 0x02); // Set gyro sample rate to 1 kHz and DLPF to 92 Hz
writeByte(MPUnum, GYRO_CONFIG, 1<<FS); // Set full scale range for the gyro to 250 dps
writeByte(MPUnum, ACCEL_CONFIG2, 0x02); // Set accelerometer rate to 1 kHz and bandwidth to 92 Hz
writeByte(MPUnum, ACCEL_CONFIG, 1<<FS); // Set full scale range for the accelerometer to 2 g
for( int ii = 0; ii < 200; ii++) { // get average current values of gyro and acclerometer
readBytes(MPUnum, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
aAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
aAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
aAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
readBytes(MPUnum, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
gAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
gAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
gAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
}
for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average current readings
aAvg[ii] /= 200;
gAvg[ii] /= 200;
}
// Configure the accelerometer for self-test
writeByte(MPUnum, ACCEL_CONFIG, 0xE0); // Enable self test on all three axes and set accelerometer range to +/- 2 g
writeByte(MPUnum, GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s
delay(25); // Delay a while to let the device stabilize
for( int ii = 0; ii < 200; ii++) { // get average self-test values of gyro and acclerometer
readBytes(MPUnum, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
aSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
aSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
aSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
readBytes(MPUnum, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
gSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
gSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
gSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
}
for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average self-test readings
aSTAvg[ii] /= 200;
gSTAvg[ii] /= 200;
}
// Configure the gyro and accelerometer for normal operation
writeByte(MPUnum, ACCEL_CONFIG, 0x00);
writeByte(MPUnum, GYRO_CONFIG, 0x00);
delay(25); // Delay a while to let the device stabilize
// Retrieve accelerometer and gyro factory Self-Test Code from USR_Reg
selfTest[0] = readByte(MPUnum, SELF_TEST_X_ACCEL); // X-axis accel self-test results
selfTest[1] = readByte(MPUnum, SELF_TEST_Y_ACCEL); // Y-axis accel self-test results
selfTest[2] = readByte(MPUnum, SELF_TEST_Z_ACCEL); // Z-axis accel self-test results
selfTest[3] = readByte(MPUnum, SELF_TEST_X_GYRO); // X-axis gyro self-test results
selfTest[4] = readByte(MPUnum, SELF_TEST_Y_GYRO); // Y-axis gyro self-test results
selfTest[5] = readByte(MPUnum, SELF_TEST_Z_GYRO); // Z-axis gyro self-test results
// Retrieve factory self-test value from self-test code reads
factoryTrim[0] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[0] - 1.0) )); // FT[Xa] factory trim calculation
factoryTrim[1] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[1] - 1.0) )); // FT[Ya] factory trim calculation
factoryTrim[2] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[2] - 1.0) )); // FT[Za] factory trim calculation
factoryTrim[3] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[3] - 1.0) )); // FT[Xg] factory trim calculation
factoryTrim[4] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[4] - 1.0) )); // FT[Yg] factory trim calculation
factoryTrim[5] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[5] - 1.0) )); // FT[Zg] factory trim calculation
// Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response
// To get percent, must multiply by 100
for (int i = 0; i < 3; i++) {
destination[i] = 100.0f*((float)(aSTAvg[i] - aAvg[i]))/factoryTrim[i] - 100.0f; // Report percent differences
destination[i+3] = 100.0f*((float)(gSTAvg[i] - gAvg[i]))/factoryTrim[i+3] - 100.0f; // Report percent differences
}
}
// simple function to scan for I2C devices on the bus
void MPU9250::I2Cscan()
{
// scan for i2c devices
byte error, address;
int nDevices;
Serial.println("Scanning...");
nDevices = 0;
for(address = 1; address < 127; address++ )
{
// The i2c_scanner uses the return value of
// the Write.endTransmisstion to see if
// a device did acknowledge to the address.
Wire.beginTransmission(address);
error = Wire.endTransmission();
if (error == 0)
{
Serial.print("I2C device found at address 0x");
if (address<16)
Serial.print("0");
Serial.print(address,HEX);
Serial.println(" !");
nDevices++;
}
else if (error==4)
{
Serial.print("Unknown error at address 0x");
if (address<16)
Serial.print("0");
Serial.println(address,HEX);
}
}
if (nDevices == 0)
Serial.println("No I2C devices found\n");
else
Serial.println("done\n");
}
// I2C read/write functions for the MPU9250 sensors
void MPU9250::writeByte(uint8_t address, uint8_t subAddress, uint8_t data)
{
Wire.beginTransmission(address); // Initialize the Tx buffer
Wire.write(subAddress); // Put slave register address in Tx buffer
Wire.write(data); // Put data in Tx buffer
Wire.endTransmission(); // Send the Tx buffer
}
uint8_t MPU9250::readByte(uint8_t address, uint8_t subAddress)
{
uint8_t data = 0; // `data` will store the register data
Wire.beginTransmission(address); // Initialize the Tx buffer
Wire.write(subAddress); // Put slave register address in Tx buffer
Wire.endTransmission(false); // Send the Tx buffer, but send a restart to keep connection alive
Wire.requestFrom(address, (uint8_t)1); // Read two bytes from slave register address on MPU9250
data = Wire.read(); // Fill Rx buffer with result
return data; // Return data read from slave register
}
void MPU9250::readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest)
{
Wire.beginTransmission(address); // Initialize the Tx buffer
Wire.write(subAddress); // Put slave register address in Tx buffer
Wire.endTransmission(false); // Send the Tx buffer, but send a restart to keep connection alive
uint8_t i = 0;
Wire.requestFrom(address, count); // Read bytes from slave register address
while (Wire.available()) {
dest[i++] = Wire.read(); } // Put read results in the Rx buffer
}