-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy patheval_sync.py
350 lines (299 loc) · 14.2 KB
/
eval_sync.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
# main file to be executed to evaluate models for few shot learning in the
# synchrous-label setting
import os
import sys
import json
import time
from datetime import datetime
import argparse
import logging
import numpy as np
import random
import torch
from torchmeta_local.utils.data import BatchMetaDataLoader
from model_few_shot import (
ConvLSTMModel, ConvDeltaModel, ConvSRWMModel,
Res12LSTMModel, Res12DeltaModel, Res12SRWMModel,
StatefulConvSRWMModel)
from utils_few_shot import eval_model_label_sync
parser = argparse.ArgumentParser(
description='N-way K-shot learning based on label synchronous '
'seq-processing NNs with only predicting (N*K+1)th image.')
parser.add_argument('--data_dir', type=str,
default='./data', help='location of the data corpus')
parser.add_argument('--name_dataset', type=str, default='omniglot',
choices=['omniglot', 'miniimagenet', 'omniglot_rgb84x84',
'omniglot_rgb84x84_norm', 'omniglot_norm',
'miniimagenet_norm', 'tieredimagenet',
'fc100', 'fc100_norm'])
parser.add_argument('--num_worker', default=12, type=int,
help='for dataloader.')
parser.add_argument('--work_dir', default='save_models', type=str,
help='where to save model ckpt.')
parser.add_argument('--load_from', default='save_models/aaa/', type=str,
help='dir from where to load model ckpt.')
parser.add_argument('--load_from_checkpoint',
default=None,
type=str, help='path from where to load model ckpt.')
parser.add_argument('--model_type', type=str, default='lstm',
choices=['lstm', 'deltanet', 'srwm',
'res12_lstm', 'res12_deltanet', 'res12_srwm',
'stateful_srwm'],
help='model architecture')
parser.add_argument('--seed', default=1, type=int, help='Seed.')
parser.add_argument('--valid_seed', default=0, type=int, help='Seed.')
parser.add_argument('--test_seed', default=0, type=int, help='Seed.')
parser.add_argument('--disable_eval_shuffling', action='store_true',
help='disable shuffling of valid/test sets. Only useful '
'to reproduce old/buggy behavior.')
parser.add_argument('--fixed_test', action='store_true',
help='use fixed test set.')
parser.add_argument('--eval_on_valid', action='store_true',
help='use fixed test set.')
# model hyper-parameters:
parser.add_argument('--num_layer', default=1, type=int,
help='number of layers. for both LSTM and Trafo.')
parser.add_argument('--hidden_size', default=512, type=int,
help='hidden size. for both LSTM and Trafo.')
parser.add_argument('--n_head', default=8, type=int,
help='Transformer number of heads.')
parser.add_argument('--ff_factor', default=4, type=int,
help='Transformer ff dim to hidden dim ratio.')
parser.add_argument('--dropout', default=0.0, type=float,
help='dropout rate.')
parser.add_argument('--vision_dropout', default=0.0, type=float,
help='dropout rate in the vision feat extractor.')
parser.add_argument('--srwm_beta_init', default=0.0, type=float,
help='beta bias for srwm.')
parser.add_argument('--use_input_softmax', action='store_true',
help='input softmax for srwm.')
# few shot learning setting
parser.add_argument('--n_way', default=5, type=int,
help='number of possible classes per train/test episode.')
parser.add_argument('--k_shot', default=1, type=int,
help='number of examples in the `train` part of torchmeta')
parser.add_argument('--test_per_class', default=1, type=int,
help='param for torchmeta')
# training hyper-parameters:
parser.add_argument('--total_train_steps', default=100000, type=int,
help='Number of training steps to train on')
parser.add_argument('--valid_size', default=100, type=int,
help='Number of valid batches to validate on')
parser.add_argument('--test_size', default=100, type=int,
help='Number of test batches to test on')
parser.add_argument('--num_test', default=1, type=int,
help='Number of times we run test on random test set')
parser.add_argument('--batch_size', default=16, type=int,
help='batch size.')
parser.add_argument('--learning_rate', default=1e-3, type=float,
help='batch size.')
parser.add_argument('--use_warmup', action='store_true',
help='use warmup scheduling.')
parser.add_argument('--warmup_steps', default=5000, type=int)
parser.add_argument('--grad_cummulate', default=1, type=int,
help='number of gradient accumulation steps.')
parser.add_argument('--report_every', default=100, type=int,
help='Report log every this steps (not used).')
parser.add_argument('--validate_every', default=1000, type=int,
help='Report log every this steps (not used).')
parser.add_argument('--clip', default=0.0, type=float,
help='global norm clipping threshold.')
# for wandb
parser.add_argument('--project_name', type=str, default=None,
help='project name for wandb.')
parser.add_argument('--job_name', type=str, default=None,
help='job name for wandb.')
parser.add_argument('--use_wandb', action='store_true',
help='use wandb.')
args = parser.parse_args()
model_name = args.model_type
# Set work directory
args.work_dir = os.path.join(args.work_dir, time.strftime('%Y%m%d-%H%M%S'))
if not os.path.exists(args.work_dir):
os.makedirs(args.work_dir)
work_dir_key = '/'.join(os.path.abspath(args.work_dir).split('/')[-3:])
# logging
log_file_name = f"{args.work_dir}/log.txt"
handlers = [logging.FileHandler(log_file_name), logging.StreamHandler()]
logging.basicConfig(
level=logging.INFO, format='%(message)s', handlers=handlers)
loginf = logging.info
loginf(f"torch version: {torch.__version__}")
loginf(f"Work dir: {args.work_dir}")
# end wandb
# save args
loginf(f"Command executed: {sys.argv[:]}")
loginf(f"Args: {json.dumps(args.__dict__, indent=2)}")
with open(f'{args.work_dir}/args.txt', 'w') as f:
json.dump(args.__dict__, f, indent=2)
# set seed
loginf(f"Seed: {args.seed}")
seed = args.seed
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
valid_seed = args.valid_seed
test_seed = args.test_seed
loginf(f"Valid seed: {valid_seed}, Test seed: {test_seed}")
shuffled_eval = not args.disable_eval_shuffling
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
# set dataset
batch_size = args.batch_size
n_way = args.n_way
k_shot_train = args.k_shot
test_per_class = args.test_per_class
loginf(f"Dataset/Task: {args.name_dataset}")
if args.name_dataset == 'omniglot':
from torchmeta_local.datasets.helpers import omniglot as data_cls
elif args.name_dataset == 'omniglot_norm':
from torchmeta_local.datasets.helpers import omniglot_norm as data_cls
elif args.name_dataset == 'miniimagenet':
from torchmeta_local.datasets.helpers import miniimagenet as data_cls
elif args.name_dataset == 'tieredimagenet':
from torchmeta_local.datasets.helpers import tieredimagenet as data_cls
elif args.name_dataset == 'miniimagenet_norm': # mean/std normalized
from torchmeta_local.datasets.helpers import (
miniimagenet_norm as data_cls)
elif args.name_dataset == 'omniglot_rgb84x84':
from torchmeta_local.datasets.helpers import omniglot_rgb84x84 as data_cls
elif args.name_dataset == 'omniglot_rgb84x84_norm': # mean/std normalized
from torchmeta_local.datasets.helpers import (
omniglot_rgb84x84_norm as data_cls)
elif args.name_dataset == 'fc100':
from torchmeta_local.datasets.helpers import fc100 as data_cls
elif args.name_dataset == 'fc100_norm':
from torchmeta_local.datasets.helpers import fc100_norm as data_cls
else:
assert False, f'Unknown dataset: {args.name_dataset}'
# load test set
if args.eval_on_valid:
test_dataset = data_cls(args.data_dir, ways=n_way, shots=k_shot_train,
test_shots=test_per_class, meta_val=True,
download=True, shuffle=shuffled_eval,
seed=test_seed)
else:
test_dataset = data_cls(args.data_dir, ways=n_way, shots=k_shot_train,
test_shots=test_per_class, meta_test=True,
download=True, shuffle=shuffled_eval,
seed=test_seed)
if args.fixed_test:
# https://github.com/tristandeleu/pytorch-meta/issues/132
test_class_size = len(test_dataset.dataset) # num classes in valid
# `dataset` here is torchmeta ClassDataset
import itertools
from torch.utils.data import Subset
cls_indices = np.array(range(test_class_size))
all_indices = []
for subset in itertools.combinations(cls_indices, args.n_way):
all_indices.append(subset)
test_total_size = args.test_size * batch_size
test_indices = random.sample(all_indices, test_total_size)
test_dataset = Subset(test_dataset, test_indices)
test_dataloader = BatchMetaDataLoader(
test_dataset, batch_size=batch_size, num_workers=args.num_worker,
pin_memory=True)
device = 'cuda'
# setting model
hidden_size = args.hidden_size
num_classes = args.n_way
num_layer = args.num_layer
n_head = args.n_head
dim_head = hidden_size // n_head
dim_ff = hidden_size * args.ff_factor
dropout_rate = args.dropout
vision_dropout = args.vision_dropout
# is_imagenet = args.name_dataset != 'omniglot'
is_imagenet = args.name_dataset not in ['omniglot', 'omniglot_norm']
is_fc100 = False
if args.name_dataset in ['fc100', 'fc100_norm']:
is_fc100 = True
is_imagenet = False
if model_name == 'lstm': # conv lstm
loginf("Model: LSTM")
model = ConvLSTMModel(hidden_size, num_classes, num_layer=num_layer,
vision_dropout=vision_dropout,
imagenet=is_imagenet, fc100=is_fc100)
elif model_name == 'deltanet':
loginf("Model: DeltaNet")
model = ConvDeltaModel(hidden_size=hidden_size, num_layers=num_layer,
num_head=n_head, dim_head=dim_head, dim_ff=dim_ff,
dropout=dropout_rate, num_classes=num_classes,
vision_dropout=vision_dropout,
imagenet=is_imagenet, fc100=is_fc100)
elif model_name == 'srwm':
loginf("Model: Self-Referential learning")
model = ConvSRWMModel(hidden_size=hidden_size, num_layers=num_layer,
num_head=n_head, dim_head=dim_head, dim_ff=dim_ff,
dropout=dropout_rate, num_classes=num_classes,
vision_dropout=vision_dropout,
use_ln=True, beta_init=args.srwm_beta_init,
use_input_softmax=args.use_input_softmax,
imagenet=is_imagenet, fc100=is_fc100)
elif model_name == 'stateful_srwm':
loginf("Model: Self-Referential learning")
model = StatefulConvSRWMModel(hidden_size=hidden_size, num_layers=num_layer,
num_head=n_head, dim_head=dim_head, dim_ff=dim_ff,
dropout=dropout_rate, num_classes=num_classes,
vision_dropout=vision_dropout,
use_ln=True, beta_init=args.srwm_beta_init,
use_input_softmax=args.use_input_softmax,
imagenet=is_imagenet, fc100=is_fc100)
elif model_name == 'res12_lstm':
loginf("Model: Resnet12 + LSTM")
model = Res12LSTMModel(hidden_size=hidden_size, num_layers=num_layer,
dropout=dropout_rate,
vision_dropout=vision_dropout,
num_classes=num_classes, imagenet=is_imagenet)
elif model_name == 'res12_deltanet':
# assert is_imagenet, 'Mainly for Imagenet'
loginf("Model: Resnet12 + Deltanet")
model = Res12DeltaModel(hidden_size=hidden_size, num_layers=num_layer,
num_head=n_head, dim_head=dim_head, dim_ff=dim_ff,
dropout=dropout_rate,
vision_dropout=vision_dropout,
num_classes=num_classes, imagenet=is_imagenet)
elif model_name == 'res12_srwm':
# assert is_imagenet, 'Mainly for Imagenet'
loginf("Model: Resnet12 + SRWM")
model = Res12SRWMModel(hidden_size=hidden_size, num_layers=num_layer,
num_head=n_head, dim_head=dim_head, dim_ff=dim_ff,
dropout=dropout_rate, num_classes=num_classes,
vision_dropout=vision_dropout,
use_ln=True, beta_init=args.srwm_beta_init,
use_input_softmax=args.use_input_softmax,
imagenet=is_imagenet)
loginf(f"Number of trainable params: {model.num_params()}")
loginf(f"{model}")
model = model.to(device)
# Set optimiser
learning_rate = args.learning_rate
clip = args.clip
############
best_model_path = os.path.join(args.load_from, 'best_model.pt')
lastest_model_path = os.path.join(args.load_from, 'lastest_model.pt')
loginf(f"[{datetime.now().strftime('%Y/%m/%d %H:%M:%S')}] Start Eval")
# load_from_checkpoint overwrite load_from
if args.load_from_checkpoint is not None:
best_model_path = args.load_from_checkpoint
checkpoint = torch.load(best_model_path)
model.load_state_dict(checkpoint['model_state_dict'])
model.eval()
results = []
num_test = args.num_test
test_size = args.test_size
for i in range(num_test):
with torch.no_grad():
test_total = eval_model_label_sync(
model, test_dataloader, num_steps=args.test_size)
test_total = 100 * test_total
loginf(
f"[test {i} {datetime.now().strftime('%Y/%m/%d %H:%M:%S')}] "
f'test total {test_total :.2f} %')
results.append(test_total)
mean = np.mean(results)
std = np.std(results)
loginf(
f'[{num_test} tests using {batch_size * test_size} samples each] '
f'mean: {mean:.2f}, std: {std:.2f}, 95%-CI {1.96 * std / num_test:.2f}')