-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathutils_few_shot.py
334 lines (260 loc) · 12.6 KB
/
utils_few_shot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
# Implement evaluation functions
import torch
# eval function for sync-label case
def eval_model_label_sync(model, eval_dataloader, num_steps, device='cuda'):
val_running_correct = 0
val_running_total = 0
for val_batch_id, val_batch in enumerate(eval_dataloader):
val_inputs, val_targets = val_batch['train']
val_inputs = val_inputs.to(device=device) # (B, len, **)
val_targets = val_targets.to(device=device) # (B, len)
val_bsz, _ = val_targets.shape
val_inputs = val_inputs.transpose(0, 1)
val_targets = val_targets.transpose(0, 1)
# 'test' part
val_test_inputs, val_test_targets = val_batch['test']
val_test_inputs = val_test_inputs.to(device=device) # (B, len, **)
val_test_targets = val_test_targets.to(device=device) # (B, len)
val_test_inputs = val_test_inputs.transpose(0, 1)
val_test_targets = val_test_targets.transpose(0, 1)
# take just one element
val_test_inputs = val_test_inputs[0].unsqueeze(0)
val_test_targets = val_test_targets[0].unsqueeze(0)
val_net_input = torch.cat([val_inputs, val_test_inputs], dim=0)
val_target_labels = torch.cat([val_targets, val_test_targets], dim=0)
with torch.no_grad():
sync_labels = val_target_labels[:-1]
dummy_last_token = torch.zeros_like(sync_labels[0].unsqueeze(0))
label_feedback = torch.cat([sync_labels, dummy_last_token], dim=0)
outputs, _ = model(val_net_input, label_feedback)
outputs = outputs[-1]
_, predicted = outputs.max(-1)
bool_correct_pred = (predicted == val_target_labels[-1])
val_running_correct += bool_correct_pred.sum().item()
val_running_total += val_bsz
if val_batch_id > num_steps:
break
running_correct = val_running_correct / val_running_total
return running_correct
# eval function for the delayed label case
# compute per-shot average accuracies.
# hard coded for two tasks
def eval_model_delayed_label_multi_sequential(
model, eval_dataloader0, eval_dataloader1, num_steps, n_way, k_shot,
device='cuda', state=None):
running_correct = 0
running_total = 0
task_running_correct = {0: 0., 1: 0.}
counts = 0
acc_per_shot = {0: [], 1: []}
cnt_per_shot = {0: [], 1: []}
for key in acc_per_shot.keys():
for _ in range(k_shot):
acc_per_shot[key].append(0)
cnt_per_shot[key].append(0)
for batch_id, (batch0, batch1) in enumerate(zip(eval_dataloader0, eval_dataloader1)):
val_inputs0, val_targets0 = batch0['train']
val_inputs1, val_targets1 = batch1['train']
del batch0['test'], batch1['test']
val_inputs0 = val_inputs0.to(device=device) # (B, len, **)
val_targets0 = val_targets0.to(device=device) # (B, len)
val_bsz0, val_len0 = val_targets0.shape
val_inputs1 = val_inputs1.to(device=device) # (B, len, **)
val_targets1 = val_targets1.to(device=device) # (B, len)
val_bsz1, val_len1 = val_targets1.shape
val_inputs0 = val_inputs0.transpose(0, 1)
val_targets0 = val_targets0.transpose(0, 1)
val_inputs1 = val_inputs1.transpose(0, 1)
val_targets1 = val_targets1.transpose(0, 1)
# no trimming needed for eval.
# contenate along time dimension, alternate order
if batch_id % 2 == 0: # ID 0 first
net_input = torch.cat([val_inputs0, val_inputs1], dim=0)
target_labels = torch.cat([val_targets0, val_targets1], dim=0)
else: # miniimagenet first
net_input = torch.cat([val_inputs1, val_inputs0], dim=0)
target_labels = torch.cat([val_targets1, val_targets0], dim=0)
slen, bsz = target_labels.shape
delayed_labels = target_labels[:-1]
dummy_last_token = torch.zeros_like(delayed_labels[0].unsqueeze(0))
label_feedback = torch.cat([dummy_last_token, delayed_labels], dim=0)
outputs, _ = model(net_input, label_feedback, state)
_, predicted = outputs.max(-1)
bool_correct_pred = (predicted == target_labels)
running_correct += bool_correct_pred.sum().item()
running_total += slen * bsz
if batch_id % 2 == 0: # ID 0 first
bool_correct_pred0 = bool_correct_pred[:val_len0]
bool_correct_pred1 = bool_correct_pred[val_len0:]
else:
bool_correct_pred1 = bool_correct_pred[:val_len1]
bool_correct_pred0 = bool_correct_pred[val_len1:]
task_running_correct[0] += bool_correct_pred0.sum().item()
task_running_correct[1] += bool_correct_pred1.sum().item()
assert val_bsz0 == val_bsz1
assert val_len0 == val_len1
counts += val_bsz0 * val_len0 # same size
val_targets0 = val_targets0.transpose(0, 1)
val_targets1 = val_targets1.transpose(0, 1)
bool_correct_pred0 = bool_correct_pred0.transpose(0, 1)
bool_correct_pred1 = bool_correct_pred1.transpose(0, 1)
for b in range(bsz):
# task 0
prev_cl_end = 0
_, cnts_uniq = torch.unique(
val_targets0[b], sorted=True, return_counts=True)
_, indices = torch.sort(val_targets0[b], stable=True)
for cl in range(n_way):
cl_cnts = cnts_uniq[cl]
cl_indices = indices[prev_cl_end:prev_cl_end + cl_cnts]
cl_indices_len = len(cl_indices)
prev_cl_end += cl_cnts
for shot in range(k_shot):
if cl_indices_len > shot:
acc_per_shot[0][shot] += (
bool_correct_pred0[b][cl_indices[shot]].item())
cnt_per_shot[0][shot] += 1
# task 1
prev_cl_end = 0
_, cnts_uniq = torch.unique(
val_targets1[b], sorted=True, return_counts=True)
_, indices = torch.sort(val_targets1[b], stable=True)
for cl in range(n_way):
cl_cnts = cnts_uniq[cl]
cl_indices = indices[prev_cl_end:prev_cl_end + cl_cnts]
cl_indices_len = len(cl_indices)
prev_cl_end += cl_cnts
for shot in range(k_shot):
if cl_indices_len > shot:
acc_per_shot[1][shot] += (
bool_correct_pred1[b][cl_indices[shot]].item())
cnt_per_shot[1][shot] += 1
if batch_id > num_steps:
break
running_correct = 100 * running_correct / running_total
task_running_correct[0] = 100 * task_running_correct[0] / counts
task_running_correct[1] = 100 * task_running_correct[1] / counts
for key in acc_per_shot.keys():
for shot in range(k_shot):
shot_acc = (
100 * acc_per_shot[key][shot] / cnt_per_shot[key][shot]
)
acc_per_shot[key][shot] = shot_acc
return running_correct, task_running_correct, acc_per_shot
# eval function for the delayed label case
# compute per-shot & per-position average accuracies
# hard coded for two tasks
def eval_per_pos_model_delayed_label_multi_sequential(
model, eval_dataloader0, eval_dataloader1, num_steps, n_way, k_shot,
device='cuda', state=None, omniglot_first=True):
running_correct = 0
running_total = 0
task_running_correct = {0: 0., 1: 0.}
counts = 0
acc_per_shot = {0: [], 1: []} # per positions in this case
cnt_per_shot = {0: [], 1: []}
for key in acc_per_shot.keys():
for _ in range(k_shot):
acc_per_shot[key].append(0)
cnt_per_shot[key].append(0)
acc_per_pos = [] # per positions in this case
cnt_per_pos = 0
for _ in range(k_shot * n_way * 2):
acc_per_pos.append(0)
for batch_id, (batch0, batch1) in enumerate(zip(eval_dataloader0, eval_dataloader1)):
val_inputs0, val_targets0 = batch0['train']
val_inputs1, val_targets1 = batch1['train']
del batch0['test'], batch1['test']
val_inputs0 = val_inputs0.to(device=device) # (B, len, **)
val_targets0 = val_targets0.to(device=device) # (B, len)
val_bsz0, val_len0 = val_targets0.shape
val_inputs1 = val_inputs1.to(device=device) # (B, len, **)
val_targets1 = val_targets1.to(device=device) # (B, len)
val_bsz1, val_len1 = val_targets1.shape
val_inputs0 = val_inputs0.transpose(0, 1)
val_targets0 = val_targets0.transpose(0, 1)
val_inputs1 = val_inputs1.transpose(0, 1)
val_targets1 = val_targets1.transpose(0, 1)
# no trimming needed for eval.
# contenate along time dimension, alternate order
if omniglot_first: # ID 0 first
net_input = torch.cat([val_inputs0, val_inputs1], dim=0)
target_labels = torch.cat([val_targets0, val_targets1], dim=0)
else: # miniimagenet first
net_input = torch.cat([val_inputs1, val_inputs0], dim=0)
target_labels = torch.cat([val_targets1, val_targets0], dim=0)
slen, bsz = target_labels.shape
delayed_labels = target_labels[:-1]
dummy_last_token = torch.zeros_like(delayed_labels[0].unsqueeze(0))
label_feedback = torch.cat([dummy_last_token, delayed_labels], dim=0)
outputs, _ = model(net_input, label_feedback, state)
_, predicted = outputs.max(-1)
bool_correct_pred = (predicted == target_labels)
running_correct += bool_correct_pred.sum().item()
running_total += slen * bsz
# per position stats:
assert slen == k_shot * n_way * 2
for pos in range(k_shot * n_way * 2):
acc_per_pos[pos] += bool_correct_pred[pos].sum().item()
cnt_per_pos += bsz
if omniglot_first: # ID 0 first
bool_correct_pred0 = bool_correct_pred[:val_len0]
bool_correct_pred1 = bool_correct_pred[val_len0:]
else:
bool_correct_pred1 = bool_correct_pred[:val_len1]
bool_correct_pred0 = bool_correct_pred[val_len1:]
task_running_correct[0] += bool_correct_pred0.sum().item()
task_running_correct[1] += bool_correct_pred1.sum().item()
assert val_bsz0 == val_bsz1
assert val_len0 == val_len1
counts += val_bsz0 * val_len0 # same size
val_targets0 = val_targets0.transpose(0, 1)
val_targets1 = val_targets1.transpose(0, 1)
bool_correct_pred0 = bool_correct_pred0.transpose(0, 1)
bool_correct_pred1 = bool_correct_pred1.transpose(0, 1)
for b in range(bsz):
# task 0
prev_cl_end = 0
_, cnts_uniq = torch.unique(
val_targets0[b], sorted=True, return_counts=True)
_, indices = torch.sort(val_targets0[b], stable=True)
for cl in range(n_way):
cl_cnts = cnts_uniq[cl]
cl_indices = indices[prev_cl_end:prev_cl_end + cl_cnts]
cl_indices_len = len(cl_indices)
prev_cl_end += cl_cnts
for shot in range(k_shot):
if cl_indices_len > shot:
acc_per_shot[0][shot] += (
bool_correct_pred0[b][cl_indices[shot]].item())
cnt_per_shot[0][shot] += 1
# task 1
prev_cl_end = 0
_, cnts_uniq = torch.unique(
val_targets1[b], sorted=True, return_counts=True)
_, indices = torch.sort(val_targets1[b], stable=True)
for cl in range(n_way):
cl_cnts = cnts_uniq[cl]
cl_indices = indices[prev_cl_end:prev_cl_end + cl_cnts]
cl_indices_len = len(cl_indices)
prev_cl_end += cl_cnts
for shot in range(k_shot):
if cl_indices_len > shot:
acc_per_shot[1][shot] += (
bool_correct_pred1[b][cl_indices[shot]].item())
cnt_per_shot[1][shot] += 1
if batch_id > num_steps:
break
running_correct = 100 * running_correct / running_total
task_running_correct[0] = 100 * task_running_correct[0] / counts
task_running_correct[1] = 100 * task_running_correct[1] / counts
for key in acc_per_shot.keys():
for shot in range(k_shot):
shot_acc = (
100 * acc_per_shot[key][shot] / cnt_per_shot[key][shot]
)
acc_per_shot[key][shot] = shot_acc
# per position:
for pos in range(k_shot * n_way * 2):
acc_per_pos[pos] = 100 * acc_per_pos[pos] / cnt_per_pos
return running_correct, task_running_correct, acc_per_shot, acc_per_pos