-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathinference.py
107 lines (87 loc) · 3 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import os
import torch
import numpy as np
import random
from torchvision import transforms
from torch.utils.data import DataLoader
from config import Config
from utils.inference_process import ToTensor, Normalize, five_point_crop, sort_file
from data.pipal22_test import PIPAL22
from tqdm import tqdm
os.environ['CUDA_VISIBLE_DEVICES'] = '5'
def setup_seed(seed):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
def eval_epoch(config, net, test_loader):
with torch.no_grad():
net.eval()
name_list = []
pred_list = []
with open(config.valid_path + '/output.txt', 'w') as f:
for data in tqdm(test_loader):
pred = 0
for i in range(config.num_avg_val):
x_d = data['d_img_org'].cuda()
x_d = five_point_crop(i, d_img=x_d, config=config)
pred += net(x_d)
pred /= config.num_avg_val
d_name = data['d_name']
pred = pred.cpu().numpy()
name_list.extend(d_name)
pred_list.extend(pred)
for i in range(len(name_list)):
f.write(name_list[i] + ',' + str(pred_list[i]) + '\n')
print(len(name_list))
f.close()
if __name__ == '__main__':
cpu_num = 1
os.environ['OMP_NUM_THREADS'] = str(cpu_num)
os.environ['OPENBLAS_NUM_THREADS'] = str(cpu_num)
os.environ['MKL_NUM_THREADS'] = str(cpu_num)
os.environ['VECLIB_MAXIMUM_THREADS'] = str(cpu_num)
os.environ['NUMEXPR_NUM_THREADS'] = str(cpu_num)
torch.set_num_threads(cpu_num)
setup_seed(20)
# config file
config = Config({
# dataset path
"db_name": "PIPAL",
"test_dis_path": "/mnt/data_16TB/ysd21/IQA/NTIRE2022_NR_Valid_Dis/",
# optimization
"batch_size": 10,
"num_avg_val": 1,
"crop_size": 224,
# device
"num_workers": 8,
# load & save checkpoint
"valid": "./output/valid",
"valid_path": "./output/valid/inference_valid",
"model_path": "./output/models/model_maniqa/epoch1"
})
if not os.path.exists(config.valid):
os.mkdir(config.valid)
if not os.path.exists(config.valid_path):
os.mkdir(config.valid_path)
# data load
test_dataset = PIPAL22(
dis_path=config.test_dis_path,
transform=transforms.Compose([Normalize(0.5, 0.5), ToTensor()]),
)
test_loader = DataLoader(
dataset=test_dataset,
batch_size=config.batch_size,
num_workers=config.num_workers,
drop_last=True,
shuffle=False
)
net = torch.load(config.model_path)
net = net.cuda()
losses, scores = [], []
eval_epoch(config, net, test_loader)
sort_file(config.valid_path + '/output.txt')