-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathCIFAR10_SNGAN.py
329 lines (273 loc) · 13.1 KB
/
CIFAR10_SNGAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import numpy as np
import matplotlib.pyplot as plt
from time import time
from keras.models import Model, Sequential
from keras.optimizers import Adam
import keras.backend as K
from keras.utils.generic_utils import Progbar
from model import *
import sys
import os
import pickle
arg_list = sys.argv
plt.switch_backend('agg')
#Hyperperemeter
BATCHSIZE=64
LEARNING_RATE = 0.0002
TRAINING_RATIO = 1
BETA_1 = 0.0
BETA_2 = 0.9
EPOCHS = 500
BN_MIMENTUM = 0.9
BN_EPSILON = 0.00002
LEAK = 0.1
LOSS = 'hinge' #Or
#LOSS = 'wasserstein' #Or
#LOSS = 'binary_crossentropy'
if arg_list[1].lower == "dcgan":
RESNET = False #for DCGAN
elif arg_list[1].lower == "resnet":
RESNET = True #for DCGAN
else:
RESNET = True
if arg_list[2].lower == "SN":
SN = True
else:
SN = False
if arg_list[3].lower == "GP":
GP = True
from functools import partial
LAMDA = 10
else:
GP = False
SAVE_DIR = 'img/{}/generated_img_CIFAR10_{}_{}_{}/'.format(LOSS, arg_list[1], arg_list[2], arg_list[3])
if not os.path.isdir('img/'+LOSS):
print('mkdir {}'.format('img/'+LOSS))
os.mkdir('img/'+LOSS)
if not os.path.isdir(SAVE_DIR):
print('mkdir {}'.format(SAVE_DIR))
os.mkdir(SAVE_DIR)
PLOT_MODEL = False
SUMMARY = True
RESIST_GPU_MEM = True
GENERATE_ROW_NUM = 8
GENERATE_BATCHSIZE = GENERATE_ROW_NUM*GENERATE_ROW_NUM
if RESIST_GPU_MEM:
# for resist GPU memory (Only in TensorFlow Backend)
if K.backend() == 'tensorflow':
import tensorflow as tf
config = tf.ConfigProto()
config.gpu_options.allow_growth=True
sess = tf.Session(config=config)
K.set_session(sess)
# wasserstein_loss
def wasserstein_loss(y_true, y_pred):
return K.mean(y_true*y_pred)
def hinge_G_loss(y_true, y_pred):
return -K.mean(y_pred)
def hinge_D_real_loss(y_true, y_pred):
return K.mean(K.relu(1-y_pred))
def hinge_D_fake_loss(y_true, y_pred):
return K.mean(K.relu(1+y_pred))
if LOSS == 'wasserstein':
G_LOSS = wasserstein_loss
D_real_LOSS = wasserstein_loss
D_fake_LOSS = wasserstein_loss
elif LOSS == 'binary_crossentropy':
G_LOSS = LOSS
D_real_LOSS = LOSS
D_fake_LOSS = LOSS
elif LOSS == 'hinge':
G_LOSS = hinge_G_loss
D_real_LOSS = hinge_D_real_loss
D_fake_LOSS = hinge_D_fake_loss
#Build Model
generator = BuildGenerator(bn_momentum=BN_MIMENTUM, bn_epsilon=BN_EPSILON, resnet=RESNET, plot=PLOT_MODEL, summary=SUMMARY)
discriminator = BuildDiscriminator(resnet=RESNET,spectral_normalization=SN, plot=PLOT_MODEL, summary=SUMMARY)
#Build Model for Training
if GP:
from keras.layers.merge import _Merge
def gradient_penalty_loss(y_true, y_pred, averaged_samples, gradient_penalty_weight):
# first get the gradients:
# assuming: - that y_pred has dimensions (batch_size, 1)
# - averaged_samples has dimensions (batch_size, nbr_features)
# gradients afterwards has dimension (batch_size, nbr_features), basically
# a list of nbr_features-dimensional gradient vectors
gradients = K.gradients(y_pred, averaged_samples)[0]
# compute the euclidean norm by squaring ...
gradients_sqr = K.square(gradients)
# ... summing over the rows ...
gradients_sqr_sum = K.sum(gradients_sqr,
axis=np.arange(1, len(gradients_sqr.shape)))
# ... and sqrt
gradient_l2_norm = K.sqrt(gradients_sqr_sum)
# compute lambda * (1 - ||grad||)^2 still for each single sample
gradient_penalty = gradient_penalty_weight * K.square(1 - gradient_l2_norm)
# return the mean as loss over all the batch samples
return K.mean(gradient_penalty)
class RandomWeightedAverage(_Merge):
"""Takes a randomly-weighted average of two tensors. In geometric terms, this outputs a random point on the line
between each pair of input points.
Inheriting from _Merge is a little messy but it was the quickest solution I could think of.
Improvements appreciated."""
def _merge_function(self, inputs):
weights = K.random_uniform((BATCHSIZE, 1, 1, 1))
return (weights * inputs[0]) + ((1 - weights) * inputs[1])
Noise_input_for_training_generator = Input(shape=(128,))
Generated_image = generator(Noise_input_for_training_generator)
Discriminator_output = discriminator(Generated_image)
model_for_training_generator = Model(Noise_input_for_training_generator, Discriminator_output)
discriminator.trainable = False
if SUMMARY:
print("model_for_training_generator")
model_for_training_generator.summary()
model_for_training_generator.compile(optimizer=Adam(LEARNING_RATE, beta_1=BETA_1, beta_2=BETA_2), loss=G_LOSS)
Real_image = Input(shape=(32,32,3))
Noise_input_for_training_discriminator = Input(shape=(128,))
Fake_image = generator(Noise_input_for_training_discriminator)
Averaged_samples = RandomWeightedAverage()([Real_image, Fake_image])
Discriminator_output_for_real = discriminator(Real_image)
Discriminator_output_for_fake = discriminator(Fake_image)
Discriminator_output_for_averaged_samples = discriminator(Averaged_samples)
model_for_training_discriminator = Model([Real_image,
Noise_input_for_training_discriminator],
[Discriminator_output_for_real,
Discriminator_output_for_fake,
Discriminator_output_for_averaged_samples])
generator.trainable = False
discriminator.trainable = True
model_for_training_discriminator.compile(optimizer=Adam(LEARNING_RATE*TRAINING_RATIO, beta_1=BETA_1, beta_2=BETA_2), loss=[D_real_LOSS, D_fake_LOSS])
if SUMMARY:
print("model_for_training_discriminator")
model_for_training_discriminator.summary()
partial_gp_loss = partial(gradient_penalty_loss,
averaged_samples=averaged_samples,
gradient_penalty_weight=LAMDA)
partial_gp_loss.__name__ = 'gradient_penalty'
else:
Noise_input_for_training_generator = Input(shape=(128,))
Generated_image = generator(Noise_input_for_training_generator)
Discriminator_output = discriminator(Generated_image)
model_for_training_generator = Model(Noise_input_for_training_generator, Discriminator_output)
discriminator.trainable = False
if SUMMARY:
print("model_for_training_generator")
model_for_training_generator.summary()
model_for_training_generator.compile(optimizer=Adam(LEARNING_RATE, beta_1=BETA_1, beta_2=BETA_2), loss=G_LOSS)
Real_image = Input(shape=(32,32,3))
Noise_input_for_training_discriminator = Input(shape=(128,))
Fake_image = generator(Noise_input_for_training_discriminator)
Discriminator_output_for_real = discriminator(Real_image)
Discriminator_output_for_fake = discriminator(Fake_image)
model_for_training_discriminator = Model([Real_image,
Noise_input_for_training_discriminator],
[Discriminator_output_for_real,
Discriminator_output_for_fake])
generator.trainable = False
discriminator.trainable = True
model_for_training_discriminator.compile(optimizer=Adam(LEARNING_RATE*TRAINING_RATIO, beta_1=BETA_1, beta_2=BETA_2), loss=[D_real_LOSS, D_fake_LOSS])
if SUMMARY:
print("model_for_training_discriminator")
model_for_training_discriminator.summary()
#Load data
from keras.datasets import cifar10
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
X = np.concatenate((x_test,x_train))
## Normalize it
X = X/255*2-1
# Make Label for traing
if LOSS == 'binary_crossentropy':
fake_y = np.zeros((BATCHSIZE, 1), dtype=np.float32)
real_y = np.ones((BATCHSIZE, 1), dtype=np.float32)
else:
fake_y = np.ones((BATCHSIZE, 1), dtype=np.float32)
real_y = -fake_y
if GP:
dummy_y = np.zeros((BATCHSIZE, 1), dtype=np.float32)
test_noise = np.random.randn(GENERATE_BATCHSIZE, 128)
discriminator_loss = []
generator_loss = []
if GP:
for epoch in range(EPOCHS):
np.random.shuffle(X)
print("epoch {} of {}".format(epoch+1, EPOCHS))
num_batches = int(X.shape[0] // BATCHSIZE)
print("number of batches: {}".format(int(X.shape[0] // (BATCHSIZE))))
progress_bar = Progbar(target=int(X.shape[0] // (BATCHSIZE * TRAINING_RATIO)))
minibatches_size = BATCHSIZE * TRAINING_RATIO
start_time = time()
for index in range(int(X.shape[0] // (BATCHSIZE * TRAINING_RATIO))):
progress_bar.update(index)
discriminator_minibatches = X[index * minibatches_size:(index + 1) * minibatches_size]
for j in range(TRAINING_RATIO):
image_batch = discriminator_minibatches[j * BATCHSIZE : (j + 1) * BATCHSIZE]
noise = np.random.randn(BATCHSIZE, 128).astype(np.float32)
discriminator.trainable = True
generator.trainable = False
discriminator_loss.append(model_for_training_discriminator.train_on_batch([image_batch, noise],
[real_y, fake_y, dummy_y]))
discriminator.trainable = False
generator.trainable = True
generator_loss.append(model_for_training_generator.train_on_batch(np.random.randn(BATCHSIZE, 128), real_y))
print('\nepoch time: {}'.format(time()-start_time))
#Generate image
generated_image = generator.predict(test_noise)
generated_image = (generated_image+1)/2
for i in range(GENERATE_ROW_NUM):
new = generated_image[i*GENERATE_ROW_NUM:i*GENERATE_ROW_NUM+GENERATE_ROW_NUM].reshape(32*GENERATE_ROW_NUM,32,3)
if i!=0:
old = np.concatenate((old,new),axis=1)
else:
old = new
print('plot generated_image')
plt.imsave('{}/epoch_{:03}.png'.format(SAVE_DIR, epoch), old)
plt.plot(discriminator_loss)
plt.plot(generator_loss)
plt.legend(['discriminator', 'real_D_loss', 'fake_D_loss', 'GP_Loss', 'generator_loss'])
plt.savefig(SAVE_DIR+'/loss.png')
plt.clf()
pickle.dump({'discriminator_loss': discriminator_loss,
'generator_loss': generator_loss},
open(SAVE_DIR+'/loss-history.pkl', 'wb'))
else:
for epoch in range(EPOCHS):
np.random.shuffle(X)
print("epoch {} of {}".format(epoch+1, EPOCHS))
num_batches = int(X.shape[0] // BATCHSIZE)
print("number of batches: {}".format(int(X.shape[0] // (BATCHSIZE))))
progress_bar = Progbar(target=int(X.shape[0] // (BATCHSIZE * TRAINING_RATIO)))
minibatches_size = BATCHSIZE * TRAINING_RATIO
start_time = time()
for index in range(int(X.shape[0] // (BATCHSIZE * TRAINING_RATIO))):
progress_bar.update(index)
discriminator_minibatches = X[index * minibatches_size:(index + 1) * minibatches_size]
for j in range(TRAINING_RATIO):
image_batch = discriminator_minibatches[j * BATCHSIZE : (j + 1) * BATCHSIZE]
noise = np.random.randn(BATCHSIZE, 128).astype(np.float32)
discriminator.trainable = True
generator.trainable = False
discriminator_loss.append(model_for_training_discriminator.train_on_batch([image_batch, noise],
[real_y, fake_y]))
discriminator.trainable = False
generator.trainable = True
generator_loss.append(model_for_training_generator.train_on_batch(np.random.randn(BATCHSIZE, 128), real_y))
print('\nepoch time: {}'.format(time()-start_time))
#Generate image
generated_image = generator.predict(test_noise)
generated_image = (generated_image+1)/2
for i in range(GENERATE_ROW_NUM):
new = generated_image[i*GENERATE_ROW_NUM:i*GENERATE_ROW_NUM+GENERATE_ROW_NUM].reshape(32*GENERATE_ROW_NUM,32,3)
if i!=0:
old = np.concatenate((old,new),axis=1)
else:
old = new
print('plot generated_image')
plt.imsave('{}/epoch_{:03}.png'.format(SAVE_DIR, epoch), old)
plt.plot(discriminator_loss)
plt.plot(generator_loss)
plt.legend(['discriminator', 'real_D_loss', 'fake_D_loss', 'generator_loss'])
plt.savefig(SAVE_DIR+'/loss.png')
plt.clf()
pickle.dump({'discriminator_loss': discriminator_loss,
'generator_loss': generator_loss},
open(SAVE_DIR+'/loss-history.pkl', 'wb'))