-
Notifications
You must be signed in to change notification settings - Fork 0
/
_Pêndulo Composto30_04.nb
605 lines (589 loc) · 27.6 KB
/
_Pêndulo Composto30_04.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 9.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 157, 7]
NotebookDataLength[ 28022, 596]
NotebookOptionsPosition[ 27446, 571]
NotebookOutlinePosition[ 27827, 587]
CellTagsIndexPosition[ 27784, 584]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"M", "=",
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{
"7.71", ",", "\n", "5.76", ",", "\n", "4.81", ",", "\n", "4.52", ",",
"\n", "4.41", ",", "\n", "4.25", ",", "\n", "4.41", ",", "\n", "4.53",
",", "\n", "4.67", ",", "\n", "4.75"}], "}"}], "/", "3"}], "+",
"0.7"}]}], "\n"}]], "Input",
CellChangeTimes->{{3.60787040847795*^9, 3.6078704405643415`*^9}, {
3.6078704899602704`*^9, 3.607870491645395*^9}, {3.6078705835427685`*^9,
3.607870584163182*^9}, {3.6078716903626523`*^9, 3.607871750054451*^9}, {
3.607871988961721*^9, 3.6078720054997454`*^9}}],
Cell[BoxData[
RowBox[{"{",
RowBox[{
"3.2699999999999996`", ",", "2.62`", ",", "2.303333333333333`", ",",
"2.206666666666666`", ",", "2.17`", ",", "2.1166666666666663`", ",",
"2.17`", ",", "2.21`", ",", "2.256666666666667`", ",",
"2.283333333333333`"}], "}"}]], "Output",
CellChangeTimes->{
3.607870441950264*^9, 3.607870491997629*^9, 3.6078705846805267`*^9,
3.607871572613154*^9, {3.607871697457389*^9, 3.6078717527212286`*^9}, {
3.6078719919487114`*^9, 3.6078720078232965`*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Fit", "[",
RowBox[{"M", ",",
RowBox[{"{",
RowBox[{"1", ",", "x", ",",
RowBox[{"x", "^", "2"}], ",",
RowBox[{"x", "^", "3"}]}], "}"}], ",", "x"}], "]"}]], "Input",
CellChangeTimes->{{3.6078726701858697`*^9, 3.6078726812282343`*^9}, {
3.607872722755911*^9, 3.607872727272922*^9}, {3.607872800150508*^9,
3.6078728212365646`*^9}}],
Cell[BoxData[
RowBox[{"3.974555555555549`", "\[VeryThinSpace]", "-",
RowBox[{"0.8810275835275801`", " ", "x"}], "+",
RowBox[{"0.13172882672882608`", " ",
SuperscriptBox["x", "2"]}], "-",
RowBox[{"0.006081973581973552`", " ",
SuperscriptBox["x", "3"]}]}]], "Output",
CellChangeTimes->{
3.607872682240906*^9, 3.607872727845311*^9, {3.6078728025661173`*^9,
3.607872822398345*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Show", "[",
RowBox[{"{",
RowBox[{
RowBox[{"ListPlot", "[",
RowBox[{"M", ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{"0", ",", "7.5"}], "}"}]}], ",",
RowBox[{"Mesh", "\[Rule]",
RowBox[{"{",
RowBox[{"Range", "[",
RowBox[{"0", ",", "10", ",", "1"}], "]"}], "}"}]}], ",",
RowBox[{"MeshStyle", "\[Rule]",
RowBox[{"PointSize", "[", "Medium", "]"}]}], ",",
RowBox[{"Joined", "\[Rule]", "True"}], ",",
RowBox[{"ImageSize", "\[Rule]", "800"}], ",",
RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",", " ",
RowBox[{"PlotStyle", "\[Rule]", "Thick"}], ",",
RowBox[{"GridLinesStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Black", ",", "Dashed"}], "]"}]}], ",",
RowBox[{"Frame", "\[Rule]", "True"}], ",", " ",
RowBox[{"Background", "\[Rule]", "LightYellow"}], ",",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"{", "\"\<Experimental\>\"", "}"}]}], ",",
RowBox[{"PlotLabel", "\[Rule]",
RowBox[{"Style", "[",
RowBox[{"\"\<P\[EHat]ndulo Composto\>\"", ",", "25"}], "]"}]}]}],
"]"}], ",", "\[IndentingNewLine]",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"2", "\[Pi]", " ",
RowBox[{"Sqrt", "[",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"1", "/", "3"}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"0.048", "x"}], ")"}], "^", "2"}]}], ")"}], "/",
RowBox[{"(",
RowBox[{"9.8",
RowBox[{"(",
RowBox[{"0.048", "x"}], ")"}]}], ")"}]}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "10"}], "}"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Red", ",", "Thick"}], "}"}]}], ",",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"{", "\"\<Te\[OAcute]rico\>\"", "}"}]}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"3.974555555555549`", "\[VeryThinSpace]", "-",
RowBox[{"0.8810275835275801`", " ", "x"}], "+",
RowBox[{"0.13172882672882608`", " ",
SuperscriptBox["x", "2"]}], "-",
RowBox[{"0.006081973581973552`", " ",
SuperscriptBox["x", "3"]}]}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "10"}], "}"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Black", ",", "Dashed", ",", "Thick"}], "}"}]}], ",",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"{", "\"\<Curva de Ajuste\>\"", "}"}]}]}], "]"}]}],
"\[IndentingNewLine]", "\[IndentingNewLine]", "}"}], "]"}]], "Input",
CellChangeTimes->{{3.6078704793371897`*^9, 3.6078704847177753`*^9}, {
3.6078705152341194`*^9, 3.6078706136988716`*^9}, {3.6078706557779245`*^9,
3.6078707623229547`*^9}, {3.607870853846971*^9, 3.607871087597805*^9}, {
3.6078711312048817`*^9, 3.6078711782972755`*^9}, {3.607871216377659*^9,
3.607871289254242*^9}, {3.607871446026758*^9, 3.607871452333963*^9}, {
3.607871567686872*^9, 3.607871568153181*^9}, {3.6078716055320983`*^9,
3.6078716548719935`*^9}, {3.607871694834635*^9, 3.6078717264297*^9}, {
3.6078717651204915`*^9, 3.60787184845605*^9}, {3.607872074958049*^9,
3.607872133842306*^9}, {3.6078726918453074`*^9, 3.607872772864317*^9}, {
3.60787280855411*^9, 3.6078728688593163`*^9}}],
Cell[BoxData[
TemplateBox[{GraphicsBox[{{{{},
GraphicsComplexBox[{{1., 3.2699999999999996`}, {2., 2.62}, {3.,
2.303333333333333}, {4., 2.206666666666666}, {5., 2.17}, {6.,
2.1166666666666663`}, {7., 2.17}, {8., 2.21}, {9.,
2.256666666666667}, {10., 2.283333333333333}}, {{{}, {}, {
RGBColor[0.24720000000000014`, 0.24, 0.6],
Thickness[Large],
LineBox[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}]}}, {{
PointSize[Medium],
PointBox[{1, 2, 3, 4, 5, 6, 7, 8, 9,
10}]}, {}, {}}}], {}}, {{}, {}, {
RGBColor[1, 0, 0],
Thickness[Large],
LineBox[CompressedData["
1:eJwV1Gs81HkDBXD/GSRUM8aMS82Ef5tSqZYeKdvviC4o5VaLNtGiVQ1aKky7
3YRKSZKyZd0iIko9aCuX1ESGLpSySYxbFKaRWzzzvDif8/m+Ou+OoU+gsy9D
SUkpRJH/d2z18+r3/HbSGHTyzqFifcxzHU/zXdFODH9VPROVqY+uXcY33lNS
groM69Nz9REQf+hBfVwHCTfrnyix0gNDntby8HoHEeuviO011cPlrWKlmxUd
xMrTYXiZoR6qZ3FsYr92kMAQrz2aqnpYkJX9xO7nTvJf/f3m5fW66L33sr5i
dhcZXJTgqhugC6F0fltRfjdZpxsYzs3VwYftTWrlT7tJ3qgrs+qqDlzeRJvW
tneTkxfH1aLjdbC8pjNMqt9DbLtul60L1wGzMJPFi+ohgW9/PJ5tr4MkkeGq
A16fiMlMo6uPP/NQztG7ZMnqI8c0c8472vBgHit+sGZBH+nUfdWsY8nDNdWD
7U5r+4jfZHz4F1MeTo80Lg4Q9RFp1sElT/V52NKS8PhyVx/5ZOegQsu46Mlh
fR0r+0yyv4zFu13jQt3wuHHL8n5ydkFy3iCXC7HVucV/rOknR24et2idxsWJ
n69a8J37yY8OQusmFS4YccXrPHf3k5cH3E9L5doYnej1f32ln7jffaG+t1Eb
n5rdsusYA6Q8ZShj3iVtPEsynl/2bIDUf7b//HGONk4WmS/1ahog4g1//t7K
18b6emvLCekAObWu9FgnTxuPpmyzs5ocIBvVRSz1qdr4Z3/cb8VLB8nKrNKg
rD4O8lxHrhckDhJRbMkvy4s5OMOqMUndISPRppZbvJ05KLHg33EUykjtAZOf
7jpw0L49kIxHyIgBJ3WT1hoOVuZxXLdelJEQrllViwUHXXbbDk2TyMh5A52/
JHwObI711YWt/EqKZOdTB3q0MCyfEerMk5O9b443TcZoweed60PmsyFyeJXA
1qCJDfXk1r3BTUOksJHHV33Fxi0P4ayWjiHyabZyQr+EDebbqLBS6ht5k9qJ
l4/YyHhTahZs8Y1stvj2r6SAjY4Gg+z3ad+IRBIZcymGjYD63riSsGFi4XfP
yXkVG8FVx30CjUcJ027/uNFtFgTta1WHzEaJr/0Mid1NFmoYU3NEGCXmy30i
fs9l4QfEDsS4j5L2jtuedeksNJVeOJxxSuElhQ3ZCSxYF1y72vRllHyMsGxs
2c8CO1n81qZ4jOTfynFa/xMLhUGaLrp238lvJs0Xn6bNQGrE7p4lW5UgnLHp
fuWU6TiaMu70tZfCBv59y+4yTSi9/IB/wpnQW+gfeCVHA3ND/A66mqigLyDe
vzpNHe3yi1s07qtCi8NUmV49FfbSgEPxwWpIX//XlYoRNTi2xy0QCNSRoGb+
bshGDT2VPofFeRr4z4aJiZzcKTBlN/JtvKYh4kadRz5vCtSJ3LtZNh22F87I
3yapYl2fxzcjNxZ8zIWefL4q3lT8SnksZCPT6a5LU74K7kQ/2m4gZ6PMezik
ebMK/FRCP0gkWqgU7xtLlClj576IO5qXOahp3SgQpytjsf8CyQZvbYjPhuoW
eiqjTmuhRqglF8zv1otKOMq4l380eSGThz9y1bzaGpiIoEw2P/uXB9egHNo4
iQn15vD1wiIdtNY1D+3ZwYT0mmFCikgXh4/U3ghawkTCPD3lEjc9LI9Vd/FX
YiLust8TbwN92A76rp7ymgGPhF8kmp36EF7Y1nCwkIFh28yRlAczkWUanNh4
ioE26eqDFVGzcM5MoyB4NwNpPy2dWevNR5nniLu2AwN5kaFs/0UC9LlZCWwX
MxDlttOBKRdgmWNvoj6PgWXNqdejamfDvntTBPM7haT5yXm1DgZYGtLlHt1J
4c+y2CSHEgOUq475rnhBYeNMt8zqOYbweJxcYvqQgrXwiSc7xhCH3BfeHMun
kDLLZ84zuSFS9tf1q6RQmFOZlejoaYRpCQ03Tp6jELeowuTFAyOYXZCNn4+k
4CdTfv7UhEbV/crWT2EUfAoHDWLO0kh74n3CIojCnqMu4/bnaOyxds6ZrnCo
S9FrzfM0uI2xbdJACtHy0DNxiTTOOj2/kKBwvuXI2MUrNNbIh4YHhRRGyicb
r+XSiFy76M7tvYr9F5qxj57Q0HSf2Wq7m8Ll9L27TjylUfjYO0OgcHqIxGZ9
jWLP01E0HEDhLi9utEZCQ1ipEnBD4WYPzq6XDTRu79xhxVXYuE3P5mMbrfjh
HcU9uygsKQoXZEhpnPkhv7JK4RWR70Z8O2mISpza/lZ4g/GVgu4eGkXfT3ht
VXjfbgPBwAANjnC2Q5U/BZHVkZFbMhqCTfHDfyscOe3jqxA5jROZZqUihZNu
pp8aHqbhqfE5zFzhtMPK/qWjNPrsvx9gKZzr5LtaNE6D3mF8stePQpHRY/6q
CRqlfv4FYoUfyOaOTE7S+BhR3JOh8P8AH1VFRA==
"]]}}, {{}, {}, {
GrayLevel[0],
Thickness[Large],
Dashing[{Small, Small}],
LineBox[CompressedData["
1:eJwV13k8VF8UAPCZISHLYMaSYuaNEBJ+oqxHSUSiPZFIlrJlKVmibNlKm5Bo
o1AqWSNbliIUirJnKRIl+5Lf8dd8vp8379377j33nPOYtm57TlBIJNJdMom0
/HvnvC2Hsl2UzlquQ8/76vihsplhcpDhpJtavzvjSDU/LFWXBDMY53T78sp+
t5Txw52yGMkVjAjdVTsCbOty+cFZ29tlWjJBtyvS+VNNCj80zzve+C2ZrtvP
EfDlnyc/rGz/JvNLslDXmU3Zym4tP9yrTTn9U/KdbkuqjtMKLz7IehbR7qz4
VTfRam8cnzAvOOh+TBjx6NPVfL11h3j/KnAdWN+XkzWkm7PYGiRWxw3czBCZ
7s2/dc02NRR8yuKCy9Q6uXvH/uper+KO0irgBNv2faVs76d0x6adt70oWwmn
q0Js3WTmdN2ZI5ShHg544c6zV9RoUZdDKo1RyuCAe36nhpUOkiBIIFmt1mYF
XExZMJ8YIUPnxN74baXsQGrugWJfNlBz7qFJKLKDtJe9zz65FRCXXJLbncIG
/ZO3Dqx6zQHX01UffZVlg50DJwOuneYEU+hRXJNHAdP+WHkJCW544Xm+Y/Ne
Cgy/sQ16+3QVhKn8a39CoYCiwOe126x5oYRinmGXT4bBmMGLN0/wwhFDo0jb
PDLc4Z7+/v0UL4Rdf8lvk0sGHnbR7GgfXojJ3cl97CUZhqcOG3y+yguRob6v
TjwjQ2pHp6tTJS+46twevPKIDGseD5ReWc8H16wKTh2NJwO37qRNx18+iEkW
F+3wI4OPnixn3hwfcAdYsP32xfG3Hcm6QuaH7ji2NHZ0hWH53FZ+fmiob6Mq
+ZDBd0/M9XQ5frh6weXsFS8y/DyxruqMDe5rtbK1uwsZ3kfvlxVo5Afb6Zdm
hdZk2PHLYprYT4W0M1QfKwMyJNOCmwMPUUFZc4vhve1kmNDMfNZxhAqOmj2v
B/TJcDdy3iHOlgpLZtPx7tvIMCeT1MblToW5QFeuy0CGJ7adhb8jqbDDPu3J
dw0yUNus/UvKqNC11rGKpkQG+6XwQ+KVVBDo3z3mvJEMxdLPVX1qqKA7LVtY
pUgGJ2/SL+UGKuTaL8qf24DvJ3jPKrWdChvE9kV8lyOD165vOtFTVAja3jXf
u44MbRV2ZAsFATAIvRphsoYMv/W+rg7YKACfC5d2VIiTYWX5btW7KgJQP94Q
vRmtVqrhMLhZAA5pkdKlV5PhRhG13mO7AHjkFctwiZJhd05xfNRRATgXJSD5
XYgM1ak0pdexAjDV9X5mBQ8ZuqQijXquC0BG2gXt6FVkmHywZMt2SwDKqujs
Qmip+8M3je4IgFOLsTDBTYaLyWXzn9IFwLJ4cacBJxl0bjnXjFYIQMD8yKc0
djLkXqo8ypgUgA+Wt71rFknweGedaPiMADjnLNbvQyfyNDX9msf7a18VflvA
cxDbbVBEEYTxEzE7SWiT+DnFA1RBEKiPMdk6R4Jvj5SWouQFYbavOr13igR8
NUkp0zaCYOd3Jjz6NwnIEQ8OHz2B98vIjcujJ3ZmCFU5CsLTzb7DdWMk+NKQ
H37NTRAsitSDedEPPze5bQgQhBd5TLNbv0igMcgJx+MFQZ8vYGPVMAnsV3j3
NDQIQlv404pLAyRYLfmudf6jIKxiKFTpoBs2r22U/SQIYV1rdSb7SXhOq15f
bBcEVfWqa8fRHM3022o/BKF2E8+b7X0kSL2btz+ZLASeFhUSjF4SHHrFvauO
XQhY93+e6ewhAU/LUf2ZlUKQ91J5222018qV/+3hE4KTd86ri6L1XQ9SOcSF
wMWJPUqkmwT9mjO1LqpCYPGZ47V8Jwni95tUJKoLwYGV3tt/d+D6ud0trNEQ
gg+p6bq56Jz7ho+ZekKgeOPDJUCHcCWEftolBF9o/5ws20kg1boFtB2EICxe
Ykf6FxIc9/DL5UkUgn7tp/Zxn/H9VLpy198Rgr2ihm+c0NzjkGdwVwi4lUsv
aaOfn+bID0oTAmO53F2Dn0iw4H61YCJbCLLiBoq00HFuj4o66oRASSGYe7GZ
BE4buYtnG4Qg282q/zNaa8y5WLhJCHau65F6ge5zVXlt1ob3/zX/Yo9Wcn1d
UtkvBCNneXham0jwzrm5/MmiELj+Xelb+5EESQpqFe9INHjb0f80A+0+El8x
yEYDdmc1gyi0sPPRNwxuGtAiMh7sQtueGqq8IUwDEF3gbf1Agk3yJlUvxGhg
FvXA5hWa82dWVcMaGkiXpIomo5+d9KrmZNGA4b7huT16wWmpxn8jDYas3S4s
NJKgcb3t2wQVGnTJC458Q98fqnybt4kGFz9OFrxDGzlFvvutifPLG/eJR8c5
0uvsDGnwZ9uPGA30Rgf5BhMbGgxq/xqJbSBBl5Ok21M7GgR9fFvjh452FqLy
OdLAryVTyAE9dHrevNGVBgsqLYs66Af+dZ/M/WnwJLFCeKKeBHsCS89kB9Jg
9M8vr29o0sWXIkLBNDCtL9j6EW0VfvtwSwQNylafU3iOFrl2qvPALVyvwwX/
eaKrb1ifz0+kQYHYBNcJtNetvZKiyTQw8HQwPYj+mKRp8+UhDfTmgamNDkrZ
SNF4TINuxV3PlNCK91kPEjNp8GJFZ4YUOurRqoEj2TQwftQ8xIvWyFgKLc6l
wdazPQps6B9P/kqvLaRB7URxx8x7EmzPbnfsKqXBMEX54gB6IqeRS/cNDbLi
Xc92oO/nv8lIqabBscGatmb0UnHmyLF6/P9Lse436KzSlJjyDzT4vbkguBht
WXFdkWjB+QaVXM9Fc1eFN15spcHp6CW+Z+jCGj/3vq80WHPMdPIx2rHWTUC/
iwafFwMMHqCF649nP+ylgbqjDSUZXdl4cO+KARq03KuTTUB7NhlPnPhBA6On
VwpvoIlPujerf9JgfUxQTiz6Q+t/ajJjNODRPy0Wgz7/VaY1fJwGMS2qPyLQ
GzrFfX5M0kBXL5kRju7o5hczmsX1jw6qCEFHfmN7lb5AgxuFWfUX0ZsHpi24
SXRwqJ3Xu4D+/v3n/Ek2Orwt15AMQscNdyfVcdDB7L7OiUC0/q9mbQVuOsS5
fhVa9vhYTVc0Lx0U1/fKLfveeFHgLyodclrWZSzbbPIZw5RGh9eefleXn/dv
+kF5lggdujhze5bHezJ3y5ZfnA7Zcam3gtFHFqPY3CXo8EGSkRe6vL6koIcf
mHR4lzateQldQPHarryODlqKS7JR75fzq+PgVVk6lBRwBVxG0zktw8fl6dBn
OKx+bXl9uc1k926kg0Gv5+E4tAev/ruXKnQICDnXm4huFFRY5b2FDuWT+lKp
aB0Xl6HbWnRIfRpzLmN5/2uyaip06fCc7i/zHH3ZXzmEakAH97z86OV4+PfZ
w1bdiA7QWLRtOV5clHPgqAkd7A8176lFmwyqLWbuocO4X4bPF3Qx+LQ37cf7
pxhXetEKtwsLZw/R4dw90cUh9CozrTM7rOlgbTTbNY+uLdQb+3aKDk3MoDzW
crzTguu53OiwwpYUqojOcK3MVPKgg9TezvQt6AjWDsfzPnSw5RSfMkMbxpj0
ioXSQYGUdiMYXfA9phQu0WEDF4/gVbTM1sY7DlG4Htsy+pPRHNPmFrlXcb14
Fi8VoauOHWw2S6ZD/caFdzNo1aL4F2fv4f6yS/3ixHzxkP71SvJDjI8oazsx
dEitpclIBh2+ugSaaqK3qtpWhefTIfidLW8wumylS37JBzqIDBbSCcxXSrZZ
Nwea6SBqOeuojr5bPObJ00qHWyFsfLvQgac9lCw66aD6dMDkHFqn/Wz65BAd
DiT3JnxCF2VdvK3AJgzUVa/M7mA+5TDZv/oWhzDMqo3+KESbD8kkkLmFwfJA
cNdn9HdWfdxnqjA80RHuFcD8LZQgci1IQhgOWdfoRKNPBT+51LJFGDSUkv67
hvUhjxG4UldbGC5/4Y3OQZNLzMPSQRi6s6d1luvHrZmp4PM7hCGp8tzLtVhf
3rjoBcruF4aTfIymLLT4oc/e/u54PVLjdW8Lxuvk44lBT2HIPmf1iAvr2Ytr
fp7mZ4XB5BP/kDJ6Rz3jtPR5YVC45+gRjPbcesr5Q5QwBG5qviWH9bFOgXRc
6pEwvE35yB7RSgI/spzZ+05hsJq8wwz9SoJB/VVt0r3CoH8hPy8PbXZpxPpC
vzBMvkxM/IGW4n/mpvZTGIa7eU13Yb1+v0b1yt0ZtMDno6uxnkts1mnwEhKB
qfbj5DfYD1S47jFZayQC96akhHdhv8Hd4WvomiMCewqK2zWGsJ6fTee9ki8C
HnHHVX3RNoJtTc9eiYBcNtvbQnSB4SarP2Ui8O/J3ZQty/1Q7thpr3oR+DZn
x6P1kwTll+1u+w6KgKzJx2Jj7J989ExHw0RFwdFpVeDNPyQYSGPeSPEXhdO5
ifm12L/dkBVjL9wvBoPzLwkrATLEJtrX2DBWw6t4VztiPRksblg18HxfDWpv
D6qc2EqGGf3U2ZQScUhvcDGxxH6+b2CrT0X4GjA5xc2ni98P97WVxett1sJ9
snX36wQyPA31FnDYIAE/1Csr2/B7JXz/cWO2SQm4Hxope+4DGTZ13EsPr5cE
7+OJ2pk/yRC//vbTemMGqF/a4t2B30MTfw1Sg3cx4PX9ZA9NNgrsLhlP2rKb
ARJJ/NqJaI69O6NT9zAgl89i80F2Cnj7z54MOMyAFjnPNw0rKLCn8aDsBge8
PldDyeGkAI837UH0RQZotEV07eejQGBZTLxxIQNCQzsbRkTxe6yz7MbsKwYY
SR+R1hKjwIH5v7GPihnQMHlGLwqtoGYRwVbGgAX+tnLZ1RRoy5T2LapmwL9C
x8Fj4hRQuVV6RL6FAXQFzviqtRQYdPkjsWqMATrVNg7WBAXMo6TEC38zwIvc
25GGLn58UMRhnAHWfd7UUfT1vtf8byYZoBS58YUfiwJwOJLkt8CAoRHulutS
FEjUZ30b5mKCqWmaT740BXaJ70+tlWJCeMnVlXVyFIjvVyw7Is0E3oy57BXy
FOh/ytk+IsME/Y9bGID2h2IqvzwT3otk6uagn5xg+e9VZkKGw6nLCQoU4H7+
Z0+HNhOuSI8bH1KkQI3+ZdLoASa8Kos1TlWmgCCfo3jgISaohxEjreijrXpq
VAsmNGfx7ORWocCU0+QpFSsmOLlaaLuipa9Ytp45zoQzEb8WVf6jQMgXuawl
NyYMbr1Q80yVAnquNUcEIpiwYNsa5K1Ogbm2IYPKSCZoOQfxPUDnbONRORvN
BH/5IMMPaGkxc87OK0xoiX1ftn4z7mfl15zHcUxIPBT3ug3dJjbKCw+ZkDbU
ViqtQYFrIdTZ8VQmWBz3WjRFG4+p9Kc+YsKetIj+M+iSyrOvVmUyodrkZFYV
+qEb2aH1BRPiAsgK1poUcK+ilbmWMmHYzyPtghYF5JTUM5nlTPiaoGz/EN2X
eDiupYIJOjdi3lejD7gnO2tU4/702UVza1NAS1xWjKOeCWtMLjfHoDlPa3rc
+cqEpP35B4N1KFDRbmVl1sGE88Z1p+6i/QyCDNm6mCConMJ6jR4Vr5Jw6mWC
SmxjwCS6pdq0TvUHE0aWdrfa6FIgZY2t1PtJvD/71ZQsUEDjP3lF22kmkCzs
03XQLUYT6jMzOB8uRa59aM6zYcZSC0z4fMK/MQDt/jHDw59CQP9xsmc9mvuH
p78gO4Hfjecie9AP/2mFPV5BgH1K366/6Db5xoQWTgKiaTOtInoYn2F/yxT4
Ccjo5pu0RH9NKq6toBJQwUFxdEF7vQxtOSRIwP3G4tAA9OMekR8hdAIkNkyU
JaEFNLX4O8UJeGt3QKUV/cR8hZjnWgJ8v3tM96MNHBsILkkCBtsU7MfRvjeP
qW0iCAga7dPl2UqBb2MhVjGyBCioGPdoov05TB1YcgSY+OiOGqCF14qcLpQn
QG4u7aE5eufO9JABRQLib2lw26P7j3lc9lMi4KT0mkI39PmzmvECKgScaW3n
P4fOflifqb2JgJywYzmRaJOiuNxmNRxv5iv5Onrwo3Wp02YC9nkkTyWiVy/9
abqpSYCFw6lP6egcelGHvDYBjvvlSp+jTRVCBst1CHiucmd3Pjr4sPDcLz0C
LO9x2b1BS7h3s4VsI4CSVvD9Lbog7DHv6u0EHA0KE2hA77lzWuS5AQHcw7t6
m9AjLzWYBoYEPE4aOtCKDqtlk+8wIqDFXNWjHc3ofa/qYUzA5jec/3WjX03f
1OHcRYBrhl7CN/Q+PmvDZFMC+MoLHw6gR6Vk96ia4f6VGe//gb6k+edIrTkB
0sebMobRxJ5XJ47tJaDNRjZ1BF3sGOw2tY8AnzOy+qPoA4Em56IP4HwsnoaP
oX/fpAcThwggvb3q9hsd+aQruuAwPs/n+fyypd48ijM9QkCeVL/8H3SDwszD
DksCkpJryMv2iTN8efIozkeLN3D5/wQpoXzGmoBLPVcfLD+/zmmoMcyGALtT
Km7L43s1b+miHcf9KqnrXZ6fhHbkyH07AkaLNOaX5/827euckj0B7vqWRcvv
50GV5yp1ICBrCy8xiF7j6yeyy4kAaoDcxj50VV/duvaTBEyNxX5bXj/XXWtU
nZxxfT3XanWgRfOdt067EMAz/ESzDV3BeG0W6ob3q67pbUY7R/JaC50mwOA/
Q4VGdKlVlt9GL4znz0YvK9GONf8iXntjfOp8GS1BCyrvjjc+S8DWnvjGArQ9
++8cB18C0izWBGWiqa7wZtIP12MyYfdDdGFr7MfgAIwf86I3SWieTOXRlCAC
shstE6LRebSLCxsu4vi5cXPB6GPnm7iLg3E/er8v+aJfmnvKtIUREBK7bcoB
bTGTc4wag/E/zXlZG81uu8It+TKOl7uORwWdVbc/QCEWz18VbJBGk1OmEgyv
E/Dv6MBBXvTj7ZubgxLweUwB4+XzvOfZpV6+2wRMCBp1vkXPi34ZS0rC97Wx
F3iFNh05x1OYQoBXQuXR2+jJa0Xb/6QSoMrcHHkYnbywal/gIwI07r6RMUQb
2lva8qbj+4SL26uhk7Ysnl//BK8LPawUQG/t0SmwySbg2ztYUYn5KnZDhVxT
CQHDo7+8hdGPNx/hulhGwAjdm28R82fptonvyhUEKOrtVe1Djx6WTr1ahflQ
y0YmC20cFilp/h7z1UR7qg6ao3sP7cMXPL+FvJ1GmI/XDv8cD2zH/Ede2rQe
rToZ8nFjJwGJz86JcaKPr8q/fKWHgNpPBwMrMf+XqYtz7f6O+edMY7k62i+2
b7F+AuPVxmVuJdaPa7f9OwKmCBAdHB3sxvqTkUYv2jBDgJSKwpF8dFvxDp+Y
eQKqC6W/2qHVhjLHTSgsWHjx34ZXWL9+63l9r+NnwbFkV5LpFoyfv+wf38mx
YI2MJ1NMDet1hn6DpQILNMZyHAY24Xm1Cakb28CCnAvW8AJt0MhWTVdmQYGe
1eMdaOlMSpGNOguUPv4zdcN6PWBLSp3dxoI0w+nP6Vjf7ZrmfdZbscDXNa2p
FvsFywjNM8VHWVAcZi8Zgd4Hfp67j7Eg0ZA8Z4DWz5pz8T7OAuEVmw6Vb8Dz
HzlrW+7EAjP2hJzn2H/06U2bHD7DAjs19/pz2M/YvhhnRFxhgaqOflDOOjxP
F/cu7LzKgn9lf/ot0N57c1p5rrOA49izXBL60qT35dg4FkgrxibuxH4pa8vs
/K07LHieYenciv3VbPnS57RMFryXqmb7JInx0cQTU1nDAqk1bClHsb9LfODi
GPaOBSWj/qxx7AcfeDVsM6xjwUzBc95QdJ5w7FxdA66Pm59guggFOiyEHJs/
seAMh2DbEJ0CMn1i2771seBG2w9pU0EKKOX4SjwcYMGUuO5YqwDW59D22RPf
WZCnL7XaBm0ic+f50DALki58iDtNxXx0iiHx5w++j9E66SjsT/21Lsxm/2UB
9aDDIj86lPdbi9ckCwzK72+6wYv93rMHUTMzLHgyoPE2kYcC94PYHV7N4fja
KsRadKb5ia3+CyxYveFQR/IqrEdE9VqdfywQZPOdkkSX/JWeXVpiwVG+E+53
uSnwP3MR3yw=
"]]}}}, {}}, AspectRatio ->
NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> True,
AxesOrigin -> {0, 0}, Background -> RGBColor[1, 1, 0.85], Frame -> True,
FrameLabel -> {None, None}, GridLines -> Automatic, GridLinesStyle ->
Directive[
GrayLevel[0],
Dashing[{Small, Small}]], ImageSize -> 800, Method -> {}, PlotLabel ->
FormBox[
StyleBox["\"P\[EHat]ndulo Composto\"", 25, StripOnInput -> False],
TraditionalForm], PlotRange -> {{0, 10.}, {0, 7.5}}, PlotRangeClipping ->
True, PlotRangePadding -> {{0.2, 0.2}, {0., 0.}}],TagBox[
GridBox[{{
TemplateBox[{"\"Te\[OAcute]rico\""}, "LineLegend",
DisplayFunction -> (StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[{
Opacity[0.3],
GrayLevel[0]}],
RGBColor[1, 0, 0],
Thickness[Large]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[{
Opacity[0.3],
GrayLevel[0]}],
RGBColor[1, 0, 0],
Thickness[Large]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> 1,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {
"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Times"}, Background -> Automatic, StripOnInput ->
False]& ), Editable -> True,
InterpretationFunction :> (RowBox[{"LineLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"RGBColor", "[",
RowBox[{"1", ",", "0", ",", "0"}], "]"}], ",",
RowBox[{"Thickness", "[", "Large", "]"}]}], "]"}], "}"}],
",",
RowBox[{"{", #, "}"}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& )]}, {
TemplateBox[{"\"Experimental\""}, "PointLegend",
DisplayFunction -> (StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{}, {
Directive[
EdgeForm[{
Opacity[0.3],
GrayLevel[0]}],
RGBColor[0.24720000000000014`, 0.24, 0.6],
Thickness[Large]], {
Directive[
EdgeForm[{
Opacity[0.3],
GrayLevel[0]}],
RGBColor[0.24720000000000014`, 0.24, 0.6],
Thickness[Large]],
PointBox[
NCache[{
Scaled[{
Rational[1, 2],
Rational[1, 2]}]}, {
Scaled[{0.5, 0.5}]}]]}}}, AspectRatio -> Full,
ImageSize -> {10, 10}, PlotRangePadding -> None,
ImagePadding -> 1,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {
"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Times"}, Background -> Automatic, StripOnInput ->
False]& ), Editable -> True,
InterpretationFunction :> (RowBox[{"PointLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"RGBColor", "[",
RowBox[{
"0.24720000000000014`", ",", "0.24`", ",", "0.6`"}],
"]"}], ",",
RowBox[{"Thickness", "[", "Large", "]"}]}], "]"}], "}"}],
",",
RowBox[{"{", #, "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}], ",",
RowBox[{"LegendMarkers", "\[Rule]", "False"}]}], "}"}]}],
"]"}]& )]}, {
TemplateBox[{"\"Curva de Ajuste\""}, "LineLegend",
DisplayFunction -> (StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[{
Opacity[0.3],
GrayLevel[0]}],
GrayLevel[0],
Dashing[{Small, Small}],
Thickness[Large]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[{
Opacity[0.3],
GrayLevel[0]}],
GrayLevel[0],
Dashing[{Small, Small}],
Thickness[Large]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> 1,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {
"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Times"}, Background -> Automatic, StripOnInput ->
False]& ), Editable -> True,
InterpretationFunction :> (RowBox[{"LineLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"GrayLevel", "[", "0", "]"}], ",",
RowBox[{"Dashing", "[",
RowBox[{"{",
RowBox[{"Small", ",", "Small"}], "}"}], "]"}], ",",
RowBox[{"Thickness", "[", "Large", "]"}]}], "]"}], "}"}],
",",
RowBox[{"{", #, "}"}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& )]}},
AutoDelete -> False, GridBoxAlignment -> {"Columns" -> {{Left}}},
GridBoxItemSize -> {"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{0}}}], "Grid"]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
CellChangeTimes->{{3.607872714682533*^9, 3.6078727755140886`*^9}, {
3.607872810932702*^9, 3.607872869577798*^9}}]
}, Open ]]
},
WindowSize->{935, 608},
WindowMargins->{{Automatic, 125}, {Automatic, 10}},
Magnification->0.8999999761581421,
FrontEndVersion->"9.0 for Microsoft Windows (64-bit) (November 20, 2012)",
StyleDefinitions->"Default.nb"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[579, 22, 632, 14, 230, "Input"],
Cell[1214, 38, 507, 10, 28, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[1758, 53, 380, 9, 29, "Input"],
Cell[2141, 64, 402, 9, 28, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[2580, 78, 3469, 78, 179, "Input"],
Cell[6052, 158, 21378, 410, 527, "Output"]
}, Open ]]
}
]
*)
(* End of internal cache information *)