forked from adventuresinML/adventures-in-ml-code
-
Notifications
You must be signed in to change notification settings - Fork 0
/
neural_network_tutorial.py
138 lines (115 loc) · 4.42 KB
/
neural_network_tutorial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
from sklearn.datasets import load_digits
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import numpy as np
import numpy.random as r
import matplotlib.pyplot as plt
def convert_y_to_vect(y):
y_vect = np.zeros((len(y), 10))
for i in range(len(y)):
y_vect[i, y[i]] = 1
return y_vect
def f(x):
return 1 / (1 + np.exp(-x))
def f_deriv(x):
return f(x) * (1 - f(x))
def setup_and_init_weights(nn_structure):
W = {}
b = {}
for l in range(1, len(nn_structure)):
W[l] = r.random_sample((nn_structure[l], nn_structure[l-1]))
b[l] = r.random_sample((nn_structure[l],))
return W, b
def init_tri_values(nn_structure):
tri_W = {}
tri_b = {}
for l in range(1, len(nn_structure)):
tri_W[l] = np.zeros((nn_structure[l], nn_structure[l-1]))
tri_b[l] = np.zeros((nn_structure[l],))
return tri_W, tri_b
def feed_forward(x, W, b):
h = {1: x}
z = {}
for l in range(1, len(W) + 1):
# if it is the first layer, then the input into the weights is x, otherwise,
# it is the output from the last layer
if l == 1:
node_in = x
else:
node_in = h[l]
z[l+1] = W[l].dot(node_in) + b[l] # z^(l+1) = W^(l)*h^(l) + b^(l)
h[l+1] = f(z[l+1]) # h^(l) = f(z^(l))
return h, z
def calculate_out_layer_delta(y, h_out, z_out):
# delta^(nl) = -(y_i - h_i^(nl)) * f'(z_i^(nl))
return -(y-h_out) * f_deriv(z_out)
def calculate_hidden_delta(delta_plus_1, w_l, z_l):
# delta^(l) = (transpose(W^(l)) * delta^(l+1)) * f'(z^(l))
return np.dot(np.transpose(w_l), delta_plus_1) * f_deriv(z_l)
def train_nn(nn_structure, X, y, iter_num=3000, alpha=0.25):
W, b = setup_and_init_weights(nn_structure)
cnt = 0
m = len(y)
avg_cost_func = []
print('Starting gradient descent for {} iterations'.format(iter_num))
while cnt < iter_num:
if cnt%1000 == 0:
print('Iteration {} of {}'.format(cnt, iter_num))
tri_W, tri_b = init_tri_values(nn_structure)
avg_cost = 0
for i in range(len(y)):
delta = {}
# perform the feed forward pass and return the stored h and z values, to be used in the
# gradient descent step
h, z = feed_forward(X[i, :], W, b)
# loop from nl-1 to 1 backpropagating the errors
for l in range(len(nn_structure), 0, -1):
if l == len(nn_structure):
delta[l] = calculate_out_layer_delta(y[i,:], h[l], z[l])
avg_cost += np.linalg.norm((y[i,:]-h[l]))
else:
if l > 1:
delta[l] = calculate_hidden_delta(delta[l+1], W[l], z[l])
# triW^(l) = triW^(l) + delta^(l+1) * transpose(h^(l))
tri_W[l] += np.dot(delta[l+1][:,np.newaxis], np.transpose(h[l][:,np.newaxis]))
# trib^(l) = trib^(l) + delta^(l+1)
tri_b[l] += delta[l+1]
# perform the gradient descent step for the weights in each layer
for l in range(len(nn_structure) - 1, 0, -1):
W[l] += -alpha * (1.0/m * tri_W[l])
b[l] += -alpha * (1.0/m * tri_b[l])
# complete the average cost calculation
avg_cost = 1.0/m * avg_cost
avg_cost_func.append(avg_cost)
cnt += 1
return W, b, avg_cost_func
def predict_y(W, b, X, n_layers):
m = X.shape[0]
y = np.zeros((m,))
for i in range(m):
h, z = feed_forward(X[i, :], W, b)
y[i] = np.argmax(h[n_layers])
return y
if __name__ == "__main__":
# load data and scale
digits = load_digits()
X_scale = StandardScaler()
X = X_scale.fit_transform(digits.data)
y = digits.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4)
# convert digits to vectors
y_v_train = convert_y_to_vect(y_train)
y_v_test = convert_y_to_vect(y_test)
# setup the NN structure
nn_structure = [64, 30, 10]
# train the NN
W, b, avg_cost_func = train_nn(nn_structure, X_train, y_v_train)
# plot the avg_cost_func
plt.plot(avg_cost_func)
plt.ylabel('Average J')
plt.xlabel('Iteration number')
plt.show()
# get the prediction accuracy and print
y_pred = predict_y(W, b, X_test, 3)
print('Prediction accuracy is {}%'.format(accuracy_score(y_test, y_pred) * 100))