-
Notifications
You must be signed in to change notification settings - Fork 189
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
extract_stats from grouped_* plots #815
Labels
enhancement 🔥
New feature or request
Comments
Yes, this is something I want to implement. For now, have a look at the examples to see how this can be done, one plot at a time. |
library(ggstatsplot)
p <- grouped_ggpiestats(mtcars, x = cyl, grouping.var = am)
extract_stats(p)
#> [[1]]
#> $subtitle_data
#> # A tibble: 1 × 13
#> statistic df p.value method effectsize
#> <dbl> <dbl> <dbl> <chr> <chr>
#> 1 7.68 2 0.0214 Chi-squared test for given probabilities Pearson's C
#> estimate conf.level conf.low conf.high conf.method conf.distribution n.obs
#> <dbl> <dbl> <dbl> <dbl> <chr> <chr> <int>
#> 1 0.537 0.95 0.0666 0.725 ncp chisq 19
#> expression
#> <list>
#> 1 <language>
#>
#> $caption_data
#> # A tibble: 1 × 4
#> bf10 prior.scale method expression
#> <dbl> <dbl> <chr> <list>
#> 1 1.15 1 Bayesian one-way contingency table analysis <language>
#>
#> $pairwise_comparisons_data
#> NULL
#>
#> $descriptive_data
#> # A tibble: 3 × 4
#> cyl counts perc .label
#> <fct> <int> <dbl> <chr>
#> 1 8 12 63.2 63%
#> 2 6 4 21.1 21%
#> 3 4 3 15.8 16%
#>
#> $one_sample_data
#> NULL
#>
#> $tidy_data
#> NULL
#>
#> $glance_data
#> NULL
#>
#> attr(,"class")
#> [1] "ggstatsplot_stats" "list"
#>
#> [[2]]
#> $subtitle_data
#> # A tibble: 1 × 13
#> statistic df p.value method effectsize
#> <dbl> <dbl> <dbl> <chr> <chr>
#> 1 4.77 2 0.0921 Chi-squared test for given probabilities Pearson's C
#> estimate conf.level conf.low conf.high conf.method conf.distribution n.obs
#> <dbl> <dbl> <dbl> <dbl> <chr> <chr> <int>
#> 1 0.518 0.95 0 0.741 ncp chisq 13
#> expression
#> <list>
#> 1 <language>
#>
#> $caption_data
#> # A tibble: 1 × 4
#> bf10 prior.scale method expression
#> <dbl> <dbl> <chr> <list>
#> 1 0.434 1 Bayesian one-way contingency table analysis <language>
#>
#> $pairwise_comparisons_data
#> NULL
#>
#> $descriptive_data
#> # A tibble: 3 × 4
#> cyl counts perc .label
#> <fct> <int> <dbl> <chr>
#> 1 8 2 15.4 15%
#> 2 6 3 23.1 23%
#> 3 4 8 61.5 62%
#>
#> $one_sample_data
#> NULL
#>
#> $tidy_data
#> NULL
#>
#> $glance_data
#> NULL
#>
#> attr(,"class")
#> [1] "ggstatsplot_stats" "list"
extract_subtitle(p)
#> [[1]]
#> list(chi["gof"]^2 * "(" * 2 * ")" == "7.68", italic(p) == "0.02",
#> widehat(italic("C"))["Pearson"] == "0.54", CI["95%"] ~ "[" *
#> "0.07", "0.73" * "]", italic("n")["obs"] == "19")
#>
#> [[2]]
#> list(chi["gof"]^2 * "(" * 2 * ")" == "4.77", italic(p) == "0.09",
#> widehat(italic("C"))["Pearson"] == "0.52", CI["95%"] ~ "[" *
#> "0.00", "0.74" * "]", italic("n")["obs"] == "13")
extract_caption(p)
#> [[1]]
#> list(log[e] * (BF["01"]) == "-0.14", italic("a")["Gunel-Dickey"] ==
#> "1.00")
#>
#> [[2]]
#> list(log[e] * (BF["01"]) == "0.83", italic("a")["Gunel-Dickey"] ==
#> "1.00") Created on 2024-07-27 with reprex v2.1.1 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Greetings,
Could the extract_stats function be extended such that it can extract statistics according the grouping.var when used on grouped_* plots?
The text was updated successfully, but these errors were encountered: