Skip to content

Ingvarstep/GLiNER.js

Repository files navigation

👑 GLiNER.js: Generalist and Lightweight Named Entity Recognition for JavaScript

GLiNER.js is a TypeScript-based inference engine for running GLiNER (Generalist and Lightweight Named Entity Recognition) models. GLiNER can identify any entity type using a bidirectional transformer encoder, offering a practical alternative to traditional NER models and large language models.

📄 Paper   •   📢 Discord   •   🤗 Demo   •   🤗 Available models   •   🧬 Official Repo

🌟 Key Features

  • Flexible entity recognition without predefined categories
  • Lightweight and fast inference
  • Easy integration with web applications
  • TypeScript support for better developer experience

🚀 Getting Started

Installation

npm install gliner

Basic Usage

const gliner = new Gliner({
  tokenizerPath: "onnx-community/gliner_small-v2",
  onnxSettings: {
    modelPath: "public/model.onnx", // Can be a string path or Uint8Array/ArrayBufferLike
    executionProvider: "webgpu", // Optional: "cpu", "wasm", "webgpu", or "webgl"
    wasmPaths: "path/to/wasm", // Optional: path to WASM binaries
    multiThread: true, // Optional: enable multi-threading (for wasm/cpu providers)
    maxThreads: 4, // Optional: specify number of threads (for wasm/cpu providers)
    fetchBinary: true, // Optional: prefetch binary from wasmPaths
  },
  transformersSettings: {
    // Optional
    allowLocalModels: true,
    useBrowserCache: true,
  },
  maxWidth: 12, // Optional
  modelType: "gliner", // Optional
});

await gliner.initialize();

const texts = ["Your input text here"];
const entities = ["city", "country", "person"];
const options = {
  flatNer: false, // Optional
  threshold: 0.1, // Optional
  multiLabel: false, // Optional
};

const results = await gliner.inference({
  texts,
  entities,
  ...options,
});
console.log(results);

Response Format

The inference results will be returned in the following format:

// For a single text input:
[
  {
    spanText: "New York", // The extracted entity text
    start: 10, // Start character position
    end: 18, // End character position
    label: "city", // Entity type
    score: 0.95, // Confidence score
  },
  // ... more entities
];

// For multiple text inputs, you'll get an array of arrays

🛠 Setup & Model Preparation

To use GLiNER models in a web environment, you need an ONNX format model. You can:

  1. Search for pre-converted models on HuggingFace
  2. Convert a model yourself using the official Python script

Converting to ONNX Format

Use the convert_to_onnx.py script with the following arguments:

  • model_path: Location of the GLiNER model
  • save_path: Where to save the ONNX file
  • quantize: Set to True for IntU8 quantization (optional)

Example:

python convert_to_onnx.py --model_path /path/to/your/model --save_path /path/to/save/onnx --quantize True

🌟 Use Cases

GLiNER.js offers versatile entity recognition capabilities across various domains:

  1. Enhanced Search Query Understanding
  2. Real-time PII Detection
  3. Intelligent Document Parsing
  4. Content Summarization and Insight Extraction
  5. Automated Content Tagging and Categorization ...

🔧 Areas for Improvement

  • Further optimize inference speed
  • Add support for token-based GLiNER architecture
  • Implement bi-encoder GLiNER architecture for better scalability
  • Enable model training capabilities
  • Provide more usage examples

Creating a PR

  • for any changes, remember to run pnpm changeset, otherwise there will not be a version bump and the PR Github Action will fail.

🙏 Acknowledgements

📞 Support

For questions and support, please join our Discord community or open an issue on GitHub.

About

GLiNER inference in JavaScript

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 3

  •  
  •  
  •