forked from TheHarshal30/Hawking
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Bayes.py
43 lines (34 loc) · 1.45 KB
/
Bayes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import numpy as np
class Bayes:
def fit(self,X,y):
n_samples , n_features = X.shape;
self._classes = np.unique(y);
n_classes = len(self._classes);
#calculate mean,variance,prior for each class
self._mean = np.zeros((n_classes,n_features), dtype=np.float64);
self._var = np.zeros((n_classes,n_features), dtype=np.float64);
self._prior = np.zeros((n_classes), dtype=np.float64);
for idx,c in enumerate(self._classes):
X_c = X[y==c];
self._mean[idx,:] = X_c.mean(axis=0);
self._var[idx,:] = X_c.var(axis=0);
self._prior[idx] = X_c.shape[0]/float(n_samples);
def predict(self,X):
y_pred = [self._predict(x) for x in X];
return np.array(y_pred);
def _predict(self,X):
posteriors =[];
#Calculate posterior probability for each class
for idx,c in enumerate(self._classes):
prior = np.log(self._prior[idx]);
posterior = np.sum(np.log(self._pdf(idx,c)));
posterior = prior + posterior
posteriors.append(posterior);
#Return class with highest probability
return self._classes[np.argmax(posteriors)];
def _pdf(self,class_idx,x):
mean = self._mean[class_idx];
var = self.var[class_idx];
numerator = np.exp(-((x-mean)**2)/(2*var));
denominator = np.sqrt(2*np.pi*var);
return numerator/denominator;