From 31faf9b0578b4c7d7c2d7b068aaa80e518ac0509 Mon Sep 17 00:00:00 2001 From: liudan <403644786@qq.com> Date: Mon, 21 Oct 2024 22:35:09 +0800 Subject: [PATCH] delete the error file --- .../minicpm3_4b_full_custom_pretrain_e1.py | 199 ------------------ 1 file changed, 199 deletions(-) delete mode 100644 xtuner/configs/custom_dataset/pretrain/minicpm/minicpm3_4b_full_custom_pretrain_e1.py diff --git a/xtuner/configs/custom_dataset/pretrain/minicpm/minicpm3_4b_full_custom_pretrain_e1.py b/xtuner/configs/custom_dataset/pretrain/minicpm/minicpm3_4b_full_custom_pretrain_e1.py deleted file mode 100644 index ce9d0bcd9..000000000 --- a/xtuner/configs/custom_dataset/pretrain/minicpm/minicpm3_4b_full_custom_pretrain_e1.py +++ /dev/null @@ -1,199 +0,0 @@ -# Copyright (c) OpenMMLab. All rights reserved. -"""Data format: - -[ - { - "text": "xxx" - }, - { - "text": "xxx" - }, - ... -] -""" # noqa: E501 - -from datasets import load_dataset -from mmengine.dataset import DefaultSampler -from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook, - LoggerHook, ParamSchedulerHook) -from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR -from torch.optim import AdamW -from transformers import AutoModelForCausalLM, AutoTokenizer - -from xtuner.dataset import process_hf_dataset -from xtuner.dataset.collate_fns import default_collate_fn -from xtuner.dataset.map_fns import pretrain_map_fn -from xtuner.engine.hooks import (DatasetInfoHook, EvaluateChatHook, - VarlenAttnArgsToMessageHubHook) -from xtuner.engine.runner import TrainLoop -from xtuner.model import SupervisedFinetune - -####################################################################### -# PART 1 Settings # -####################################################################### -# Model -pretrained_model_name_or_path = 'openbmb/MiniCPM3-4B' -use_varlen_attn = False - -# Data -data_files = ['/path/to/your.json'] -max_length = 1024 -pack_to_max_length = True - -# Scheduler & Optimizer -batch_size = 1 # per_device -accumulative_counts = 1 # bs = 1 GPU * 1 batch_size_per_device * 16 acc -dataloader_num_workers = 0 -max_steps = 10000 -optim_type = AdamW -lr = 2e-5 -betas = (0.9, 0.999) -weight_decay = 0 -max_norm = 1 # grad clip -warmup_ratio = 0.03 - -# Save -save_steps = 500 -save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited) - -# Evaluate the generation performance during the training -evaluation_freq = 500 -SYSTEM = '' -evaluation_inputs = ['上海是', 'Shanghai is'] - -####################################################################### -# PART 2 Model & Tokenizer # -####################################################################### -tokenizer = dict( - type=AutoTokenizer.from_pretrained, - pretrained_model_name_or_path=pretrained_model_name_or_path, - trust_remote_code=True, - padding_side='right', - eos_token="<|im_end|>") - -model = dict( - type=SupervisedFinetune, - use_varlen_attn=use_varlen_attn, - llm=dict( - type=AutoModelForCausalLM.from_pretrained, - pretrained_model_name_or_path=pretrained_model_name_or_path, - trust_remote_code=True)) - -####################################################################### -# PART 3 Dataset & Dataloader # -####################################################################### -train_dataset = dict( - type=process_hf_dataset, - dataset=dict(type=load_dataset, path='json', data_files=data_files), - tokenizer=tokenizer, - max_length=max_length, - dataset_map_fn=pretrain_map_fn, - template_map_fn=None, - remove_unused_columns=True, - shuffle_before_pack=False, - pack_to_max_length=pack_to_max_length, - use_varlen_attn=use_varlen_attn) - -train_dataloader = dict( - batch_size=batch_size, - num_workers=dataloader_num_workers, - dataset=train_dataset, - sampler=dict(type=DefaultSampler, shuffle=True), - collate_fn=dict(type=default_collate_fn, use_varlen_attn=use_varlen_attn)) - -####################################################################### -# PART 4 Scheduler & Optimizer # -####################################################################### -# optimizer -optim_wrapper = dict( - type=AmpOptimWrapper, - optimizer=dict( - type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay), - clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False), - accumulative_counts=accumulative_counts, - loss_scale='dynamic', - dtype='float16') - -# learning policy -param_scheduler = [ - dict( - type=LinearLR, - start_factor=1e-5, - by_epoch=True, - begin=0, - end=max_steps * warmup_ratio, - convert_to_iter_based=True), - dict( - type=CosineAnnealingLR, - eta_min=0.0, - by_epoch=True, - begin=max_steps * warmup_ratio, - end=max_steps, - convert_to_iter_based=True) -] - -# train, val, test setting -train_cfg = dict(type=TrainLoop, max_iters=max_steps) - -####################################################################### -# PART 5 Runtime # -####################################################################### -# Log the dialogue periodically during the training process, optional -custom_hooks = [ - dict(type=DatasetInfoHook, tokenizer=tokenizer), - dict( - type=EvaluateChatHook, - tokenizer=tokenizer, - every_n_iters=evaluation_freq, - evaluation_inputs=evaluation_inputs, - system=SYSTEM) -] - -if use_varlen_attn: - custom_hooks += [dict(type=VarlenAttnArgsToMessageHubHook)] - -# configure default hooks -default_hooks = dict( - # record the time of every iteration. - timer=dict(type=IterTimerHook), - # print log every 10 iterations. - logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10), - # enable the parameter scheduler. - param_scheduler=dict(type=ParamSchedulerHook), - # save checkpoint per `save_steps`. - checkpoint=dict( - type=CheckpointHook, - by_epoch=False, - interval=save_steps, - max_keep_ckpts=save_total_limit), - # set sampler seed in distributed evrionment. - sampler_seed=dict(type=DistSamplerSeedHook), -) - -# configure environment -env_cfg = dict( - # whether to enable cudnn benchmark - cudnn_benchmark=False, - # set multi process parameters - mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0), - # set distributed parameters - dist_cfg=dict(backend='nccl'), -) - -# set visualizer -visualizer = None - -# set log level -log_level = 'INFO' - -# load from which checkpoint -load_from = None - -# whether to resume training from the loaded checkpoint -resume = False - -# Defaults to use random seed and disable `deterministic` -randomness = dict(seed=None, deterministic=False) - -# set log processor -log_processor = dict(by_epoch=False)