diff --git a/requirements/runtime.txt b/requirements/runtime.txt index f2cb185f4..6afd859b5 100644 --- a/requirements/runtime.txt +++ b/requirements/runtime.txt @@ -1,6 +1,7 @@ bitsandbytes>=0.40.0 datasets einops +fsspec<=2023.6.0 lagent>=0.1.2 mmengine>=0.9.0 modelscope diff --git a/xtuner/configs/internlm/internlm_7b/internlm_7b_qlora_oasst1_mmlu_e3.py b/xtuner/configs/internlm/internlm_7b/internlm_7b_qlora_oasst1_mmlu_e3.py new file mode 100644 index 000000000..30d9a61a2 --- /dev/null +++ b/xtuner/configs/internlm/internlm_7b/internlm_7b_qlora_oasst1_mmlu_e3.py @@ -0,0 +1,237 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +from bitsandbytes.optim import PagedAdamW32bit +from datasets import load_dataset +from mmengine.dataset import DefaultSampler +from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook, + LoggerHook, ParamSchedulerHook) +from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR +from peft import LoraConfig +from transformers import (AutoModelForCausalLM, AutoTokenizer, + BitsAndBytesConfig) + +from xtuner.dataset import process_hf_dataset +from xtuner.dataset.collate_fns import default_collate_fn, mmlu_collate_fn +from xtuner.dataset.map_fns import (default_map_fn, oasst1_map_fn, + template_map_fn_factory) +from xtuner.engine import DatasetInfoHook, EvaluateChatHook +from xtuner.evaluation import MMLUMetric +from xtuner.model import SupervisedFinetune +from xtuner.utils import PROMPT_TEMPLATE + +####################################################################### +# PART 1 Settings # +####################################################################### +# Model +pretrained_model_name_or_path = 'internlm/internlm-7b' + +# Data +data_path = 'timdettmers/openassistant-guanaco' +prompt_template = PROMPT_TEMPLATE.internlm_chat +max_length = 2048 +pack_to_max_length = True + +# Val/Test data +# Download from https://github.com/artidoro/qlora/tree/main/data/mmlu +mmlu_data_root = './data/mmlu/' + +# Scheduler & Optimizer +batch_size = 1 # per_device +accumulative_counts = 16 +dataloader_num_workers = 0 +max_epochs = 3 +optim_type = PagedAdamW32bit +lr = 2e-4 +betas = (0.9, 0.999) +weight_decay = 0 +max_norm = 1 # grad clip + +# Evaluate the generation performance during the training +evaluation_freq = 500 +SYSTEM = '' +evaluation_inputs = [ + '请给我介绍五个上海的景点', 'Please tell me five scenic spots in Shanghai' +] + +####################################################################### +# PART 2 Model & Tokenizer # +####################################################################### +tokenizer = dict( + type=AutoTokenizer.from_pretrained, + pretrained_model_name_or_path=pretrained_model_name_or_path, + trust_remote_code=True, + padding_side='right') + +model = dict( + type=SupervisedFinetune, + llm=dict( + type=AutoModelForCausalLM.from_pretrained, + pretrained_model_name_or_path=pretrained_model_name_or_path, + trust_remote_code=True, + torch_dtype=torch.float16, + quantization_config=dict( + type=BitsAndBytesConfig, + load_in_4bit=True, + load_in_8bit=False, + llm_int8_threshold=6.0, + llm_int8_has_fp16_weight=False, + bnb_4bit_compute_dtype=torch.float16, + bnb_4bit_use_double_quant=True, + bnb_4bit_quant_type='nf4')), + lora=dict( + type=LoraConfig, + r=64, + lora_alpha=16, + lora_dropout=0.1, + bias='none', + task_type='CAUSAL_LM')) + +####################################################################### +# PART 3 Dataset & Dataloader # +####################################################################### +train_dataset = dict( + type=process_hf_dataset, + dataset=dict(type=load_dataset, path=data_path), + tokenizer=tokenizer, + max_length=max_length, + dataset_map_fn=oasst1_map_fn, + template_map_fn=dict( + type=template_map_fn_factory, template=prompt_template), + remove_unused_columns=True, + shuffle_before_pack=True, + pack_to_max_length=pack_to_max_length) + +train_dataloader = dict( + batch_size=batch_size, + num_workers=dataloader_num_workers, + dataset=train_dataset, + sampler=dict(type=DefaultSampler, shuffle=True), + collate_fn=dict(type=default_collate_fn)) + +mmlu_fs_dataset = dict( + type=load_dataset, + path='json', + data_files=dict( + val=mmlu_data_root + 'five_shot_mmlu_val.json', + test=mmlu_data_root + 'five_shot_mmlu_test.json')) + +val_mmlu_fs = dict( + type=process_hf_dataset, + dataset=mmlu_fs_dataset, + tokenizer=tokenizer, + dataset_map_fn=default_map_fn, + max_length=max_length, + input_ids_with_output=False, + pack_to_max_length=False, + split='val') + +val_dataloader = dict( + batch_size=1, + num_workers=0, + dataset=val_mmlu_fs, + sampler=dict(type=DefaultSampler, shuffle=False), + collate_fn=dict(type=mmlu_collate_fn)) + +val_evaluator = dict( + type=MMLUMetric, tokenizer=tokenizer, prefix='mmlu_fs_val') + +test_mmlu_fs = dict( + type=process_hf_dataset, + dataset=mmlu_fs_dataset, + tokenizer=tokenizer, + dataset_map_fn=default_map_fn, + max_length=max_length, + input_ids_with_output=False, + pack_to_max_length=False, + split='test') + +test_dataloader = dict( + batch_size=1, + num_workers=0, + dataset=test_mmlu_fs, + sampler=dict(type=DefaultSampler, shuffle=False), + collate_fn=dict(type=mmlu_collate_fn)) + +test_evaluator = dict( + type=MMLUMetric, tokenizer=tokenizer, prefix='mmlu_fs_test') + +####################################################################### +# PART 4 Scheduler & Optimizer # +####################################################################### +# optimizer +optim_wrapper = dict( + type=AmpOptimWrapper, + optimizer=dict( + type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay), + clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False), + accumulative_counts=accumulative_counts, + loss_scale='dynamic', + dtype='float16') + +# learning policy +# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501 +param_scheduler = dict( + type=CosineAnnealingLR, + eta_min=lr * 0.1, + by_epoch=True, + T_max=max_epochs, + convert_to_iter_based=True) + +# train, val, test setting +train_cfg = dict(by_epoch=True, max_epochs=max_epochs, val_interval=1) +val_cfg = dict(type='ValLoop') +test_cfg = dict(type='TestLoop') + +####################################################################### +# PART 5 Runtime # +####################################################################### +# Log the dialogue periodically during the training process, optional +custom_hooks = [ + dict(type=DatasetInfoHook, tokenizer=tokenizer), + dict( + type=EvaluateChatHook, + tokenizer=tokenizer, + every_n_iters=evaluation_freq, + evaluation_inputs=evaluation_inputs, + system=SYSTEM, + prompt_template=prompt_template) +] + +# configure default hooks +default_hooks = dict( + # record the time of every iteration. + timer=dict(type=IterTimerHook), + # print log every 100 iterations. + logger=dict(type=LoggerHook, interval=10), + # enable the parameter scheduler. + param_scheduler=dict(type=ParamSchedulerHook), + # save checkpoint per epoch. + checkpoint=dict(type=CheckpointHook, interval=1), + # set sampler seed in distributed evrionment. + sampler_seed=dict(type=DistSamplerSeedHook), +) + +# configure environment +env_cfg = dict( + # whether to enable cudnn benchmark + cudnn_benchmark=False, + # set multi process parameters + mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0), + # set distributed parameters + dist_cfg=dict(backend='nccl'), +) + +# set visualizer +visualizer = None + +# set log level +log_level = 'INFO' + +# load from which checkpoint +load_from = None + +# whether to resume training from the loaded checkpoint +resume = False + +# Defaults to use random seed and disable `deterministic` +randomness = dict(seed=None, deterministic=False) diff --git a/xtuner/dataset/collate_fns/mmlu_collate_fn.py b/xtuner/dataset/collate_fns/mmlu_collate_fn.py index db12646bd..5c0e2a989 100644 --- a/xtuner/dataset/collate_fns/mmlu_collate_fn.py +++ b/xtuner/dataset/collate_fns/mmlu_collate_fn.py @@ -36,4 +36,4 @@ def mmlu_collate_fn(instances: Sequence[Dict], if return_hf_format: return data_dict else: - return {'data': data_dict, 'data_samples': None} + return {'data': data_dict, 'data_samples': data_samples} diff --git a/xtuner/dataset/map_fns/dataset_map_fns/__init__.py b/xtuner/dataset/map_fns/dataset_map_fns/__init__.py index d90982971..6a106925f 100644 --- a/xtuner/dataset/map_fns/dataset_map_fns/__init__.py +++ b/xtuner/dataset/map_fns/dataset_map_fns/__init__.py @@ -5,6 +5,7 @@ from .code_alpaca_map_fn import code_alpaca_map_fn from .colors_map_fn import colors_map_fn from .crime_kg_assitant_map_fn import crime_kg_assitant_map_fn +from .default_map_fn import default_map_fn from .law_reference_map_fn import law_reference_map_fn from .medical_map_fn import medical_map_fn from .msagent_map_fn import msagent_react_map_fn @@ -23,5 +24,5 @@ 'tiny_codes_map_fn', 'colors_map_fn', 'law_reference_map_fn', 'crime_kg_assitant_map_fn', 'sql_map_fn', 'openai_map_fn', 'wizardlm_map_fn', 'stack_exchange_map_fn', 'msagent_react_map_fn', - 'pretrain_map_fn' + 'default_map_fn', 'pretrain_map_fn' ] diff --git a/xtuner/dataset/map_fns/dataset_map_fns/default_map_fn.py b/xtuner/dataset/map_fns/dataset_map_fns/default_map_fn.py new file mode 100644 index 000000000..0424b8848 --- /dev/null +++ b/xtuner/dataset/map_fns/dataset_map_fns/default_map_fn.py @@ -0,0 +1,8 @@ +# Copyright (c) OpenMMLab. All rights reserved. +def default_map_fn(example): + return { + 'conversation': [{ + 'input': example['input'], + 'output': example['output'] + }] + } diff --git a/xtuner/engine/hooks/dataset_info_hook.py b/xtuner/engine/hooks/dataset_info_hook.py index 2540c5ca4..f8200470a 100644 --- a/xtuner/engine/hooks/dataset_info_hook.py +++ b/xtuner/engine/hooks/dataset_info_hook.py @@ -14,7 +14,7 @@ def log(self, runner, dataset, mode='train'): runner.logger.info(f'{mode} example:') runner.logger.info(self.tokenizer.decode(dataset[0]['input_ids'])) - def before_run(self, runner) -> None: + def before_train(self, runner) -> None: do_train = runner.train_loop is not None do_eval = runner.val_loop is not None do_test = runner.test_loop is not None @@ -27,3 +27,11 @@ def before_run(self, runner) -> None: if do_test: test_dataset = runner.test_dataloader.dataset self.log(runner, test_dataset, mode='test') + + def before_val(self, runner) -> None: + eval_dataset = runner.val_dataloader.dataset + self.log(runner, eval_dataset, mode='eval') + + def before_test(self, runner) -> None: + test_dataset = runner.test_dataloader.dataset + self.log(runner, test_dataset, mode='test') diff --git a/xtuner/tools/test.py b/xtuner/tools/test.py index a2bde92d2..41be08411 100644 --- a/xtuner/tools/test.py +++ b/xtuner/tools/test.py @@ -4,6 +4,7 @@ import os.path as osp from types import FunctionType +import torch from mmengine.config import Config, DictAction from mmengine.registry import RUNNERS from mmengine.runner import Runner @@ -12,6 +13,29 @@ from xtuner.registry import MAP_FUNC +def guess_load_checkpoint(pth_model): + if os.path.isfile(pth_model): + state_dict = torch.load(pth_model, map_location='cpu') + if 'state_dict' in state_dict: + state_dict = state_dict['state_dict'] + elif os.path.isdir(pth_model): + try: + from deepspeed.utils.zero_to_fp32 import \ + get_fp32_state_dict_from_zero_checkpoint + except ImportError: + raise ImportError( + 'The provided PTH model appears to be a DeepSpeed checkpoint. ' + 'However, DeepSpeed library is not detected in current ' + 'environment. This suggests that DeepSpeed may not be ' + 'installed or is incorrectly configured. Please verify your ' + 'setup.') + state_dict = get_fp32_state_dict_from_zero_checkpoint( + os.path.dirname(pth_model), os.path.basename(pth_model)) + else: + raise FileNotFoundError(f'Cannot find {pth_model}') + return state_dict + + def parse_args(): parser = argparse.ArgumentParser(description='Test model') parser.add_argument('config', help='config file name or path.') @@ -85,9 +109,6 @@ def main(): cfg.work_dir = osp.join('./work_dirs', osp.splitext(osp.basename(args.config))[0]) - if args.checkpoint is not None: - cfg.load_from = args.checkpoint - # build the runner from config if 'runner_type' not in cfg: # build the default runner @@ -97,6 +118,10 @@ def main(): # if 'runner_type' is set in the cfg runner = RUNNERS.build(cfg) + state_dict = guess_load_checkpoint(args.checkpoint) + runner.model.load_state_dict(state_dict, strict=False) + runner.logger.info(f'Load checkpoint from {args.checkpoint}') + # start testing runner.test()