-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathresnet18.py
177 lines (143 loc) · 5.25 KB
/
resnet18.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
%matplotlib inline
import torch
import torchvision
from torchvision import models
import torchvision.transforms as transforms
from torchvision.transforms import ToPILImage
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.pyplot as plt
import numpy as np
# function to show an image
def imshow(img):
img = img / 2 + 0.5 # unnormalize
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1, 2, 0)))
plt.show()
def plot_kernel(model):
model_weights = model.state_dict()
fig = plt.figure()
plt.figure(figsize=(10,10))
for idx, filt in enumerate(model_weights['conv1.weight']):
#print(filt[0, :, :])
if idx >= 32: continue
plt.subplot(4,8, idx + 1)
plt.imshow(filt[0, :, :], cmap="gray")
plt.axis('off')
plt.show()
def plot_kernel_output(model,images):
fig1 = plt.figure()
plt.figure(figsize=(1,1))
img_normalized = (images[0] - images[0].min()) / (images[0].max() - images[0].min())
plt.imshow(img_normalized.numpy().transpose(1,2,0))
plt.show()
output = model.conv1(images)
layer_1 = output[0, :, :, :]
layer_1 = layer_1.data
fig = plt.figure()
plt.figure(figsize=(10,10))
for idx, filt in enumerate(layer_1):
if idx >= 32: continue
plt.subplot(4,8, idx + 1)
plt.imshow(filt, cmap="gray")
plt.axis('off')
plt.show()
def test_accuracy(net, dataloader):
########TESTING PHASE###########
#check accuracy on whole test set
correct = 0
total = 0
net.eval() #important for deactivating dropout and correctly use batchnorm accumulated statistics
with torch.no_grad():
for data in dataloader:
images, labels = data
images = images.cuda()
labels = labels.cuda()
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
accuracy = 100 * correct / total
print('Accuracy of the network on the test set: %d %%' % (
accuracy))
return accuracy
####RUNNING CODE FROM HERE:
#transform are heavily used to do simple and complex transformation and data augmentation
transform_train = transforms.Compose(
[
transforms.RandomHorizontalFlip(),
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])
transform_test = transforms.Compose(
[
transforms.Resize((224,224)),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])
trainset = torchvision.datasets.CIFAR100(root='./data', train=True,
download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128,
shuffle=True, num_workers=4,drop_last=True)
testset = torchvision.datasets.CIFAR100(root='./data', train=False,
download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=128,
shuffle=False, num_workers=4,drop_last=True)
dataiter = iter(trainloader)
###Show images:
images, labels = dataiter.next()
imshow(torchvision.utils.make_grid(images))
###
####
#Residual Network:
net = models.resnet18(pretrained=True)
net.fc = nn.Linear(512, n_classes) #changing the fully connected layer of the already allocated network
####
###Kernel:
#print("####plotting kernels of conv1 layer:####")
#plot_kernel(net)
###
net = net.cuda()
criterion = nn.CrossEntropyLoss().cuda() #it already does softmax computation for use!
optimizer = optim.Adam(net.parameters(), lr=0.0001) #better convergency w.r.t simple SGD :)
###Kernel:
#print("####plotting output of conv1 layer:#####")
#plot_kernel_output(net,images)
###
########TRAINING PHASE###########
n_loss_print = len(trainloader) #print every epoch, use smaller numbers if you wanna print loss more often!
losses=[]
accuracy = []
n_epochs = 10
for epoch in range(n_epochs): # loop over the dataset multiple times
net.train() #important for activating dropout and correctly train batchnorm
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# get the inputs and cast them into cuda wrapper
inputs, labels = data
inputs = inputs.cuda()
labels = labels.cuda()
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
if i % n_loss_print == (n_loss_print -1):
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / n_loss_print))
losses.append(running_loss / n_loss_print)
running_loss = 0.0
accuracy.append(test_accuracy(net,testloader))
print('Finished Training')
plt.title('Training loss & accuracy curves')
plt.xlabel('Epoch')
plt.ylabel('Accuracy / Loss')
plt.plot(range(n_epochs),accuracy, label='Accuracy')
plt.plot(range(n_epochs),losses, label='Loss')
plt.legend()