-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathconvert.py
40 lines (32 loc) · 1.38 KB
/
convert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import argparse
import os
import torch
from convnet_utils import switch_conv_bn_impl, switch_deploy_flag, build_model
parser = argparse.ArgumentParser(description='Convert Conversion')
parser.add_argument('load', metavar='LOAD', help='path to the weights file')
parser.add_argument('save', metavar='SAVE', help='path to the weights file')
parser.add_argument('-a', '--arch', metavar='ARCH', default='ResNet-18')
parser.add_argument('-t', '--blocktype', metavar='BLK', default='OREPA')
def convert():
args = parser.parse_args()
switch_conv_bn_impl(args.blocktype)
switch_deploy_flag(False)
train_model = build_model(args.arch)
if 'hdf5' in args.load:
from utils import model_load_hdf5
model_load_hdf5(train_model, args.load)
elif os.path.isfile(args.load):
print("=> loading checkpoint '{}'".format(args.load))
checkpoint = torch.load(args.load)
if 'state_dict' in checkpoint:
checkpoint = checkpoint['state_dict']
ckpt = {k.replace('module.', ''): v for k, v in checkpoint.items()} # strip the names
train_model.load_state_dict(ckpt)
else:
print("=> no checkpoint found at '{}'".format(args.load))
for m in train_model.modules():
if hasattr(m, 'switch_to_deploy'):
m.switch_to_deploy()
torch.save(train_model.state_dict(), args.save)
if __name__ == '__main__':
convert()