-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathcriteria.py
29 lines (23 loc) · 827 Bytes
/
criteria.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
import torch
import torch.nn as nn
loss_names = ['l1', 'l2']
class MaskedMSELoss(nn.Module):
def __init__(self):
super(MaskedMSELoss, self).__init__()
def forward(self, pred, target):
assert pred.dim() == target.dim(), "inconsistent dimensions"
valid_mask = (target > 0).detach()
diff = target - pred
diff = diff[valid_mask]
self.loss = (diff**2).mean()
return self.loss
class MaskedL1Loss(nn.Module):
def __init__(self):
super(MaskedL1Loss, self).__init__()
def forward(self, pred, target, weight=None):
assert pred.dim() == target.dim(), "inconsistent dimensions"
valid_mask = (target > 0).detach()
diff = target - pred
diff = diff[valid_mask]
self.loss = diff.abs().mean()
return self.loss