-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathp3_genEmbeddings.py
188 lines (153 loc) · 6.72 KB
/
p3_genEmbeddings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
"""Calculates BOLD dynamics metric space, per volunteer.
Argument list:
apath: Reads list of volunteers from here
(default: '/keilholz-lab/SharedFiles/SomeBrainMaps/HCPSaves_Compact/').
poolsize: Size of cpu pool (default: 14).
nVols: Number of volunteer datasets to run (default: -1 "all").
display: plot and display some intermediate results (default: False).
"""
from os.path import join as OSjoin
from os.path import isfile as OSisfile
from os import makedirs as makedirs
from multiprocessing import Pool, cpu_count, Process
from filelock import SoftFileLock as sfl
import argparse
import random
import pickle
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import scipy.sparse as sp
from scipy.spatial.distance import squareform
from scipy.signal import butter, sosfiltfilt
from pycwt.helpers import fft, fft_kwargs, rect
from tqdm import tqdm
import datetime as dt
import itertools
from functools import partial
import umap
import p_utils
import plotters
maxdim = p_utils.maxdim
truncDim = p_utils.truncDim
print([truncDim,maxdim])
TR = p_utils.TR
TARGS = p_utils.TARGS
TARGS_CEIL = p_utils.TARGS_CEIL
frq_edges = p_utils.frq_edges
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--apath', type=str, default = '/keilholz-lab/Jacob/TDABrains_00/data/FCStateClassif/anat/')
parser.add_argument('--poolSize', type=int, default=14)
parser.add_argument('--nVols', type=int, default=-1)
parser.add_argument('--display', type=bool, default=False)
args = parser.parse_args()
apath_rest = args.apath
apath_task = args.apath
vloc = args.apath
volunteers, restDirs, taskDirs, EVtxt, Blocks, Blockstxt = p_utils.getLists(vloc=vloc)
random.shuffle(volunteers)
# saveloc
saveloc = './results/'
poolSize = args.poolSize
pool = Pool(poolSize)
maxdim = p_utils.maxdim
metrics = p_utils.metrics
train_volloc = saveloc + 'ind0/'
test_volloc = saveloc + 'ind1/'
# Make table of existing data
# indices pulled from train_volloc as previous step (p3_....py) runs over all available volunteers
all_times_vols = p_utils.getSecondList(train_volloc)
allInds = []
volInds = {}
allNames = []
allNames_dict = {}
dict_count = -1
dLen = 0
for voln in tqdm(all_times_vols,desc='Loading timing info.'):
allInds.append(np.load(train_volloc + str(voln) + '.npy', allow_pickle=True))
volInds[voln] = np.empty(allInds[-1].shape,dtype = 'int')
for i in allInds[-1]:
dict_count += 1
allNames.append( (voln[:5] + '_{:03d}').format(i) )
allNames_dict[allNames[-1]] = dict_count
volInds[voln][i] = dict_count
dLen = i+1
lan = len(allNames)
san = set(allNames)
# Initialize data Mat
dataMat = {}
for metric in metrics:
print('Current metric is {}'.format(metric))
for dim in range(maxdim+1):
dataMat[dim] = np.full([lan,lan],1000.0)
dataMat[dim][np.diag_indices(lan)] = 0
# Load distances
for metric in metrics:
locBeg = saveloc + '{}AllDist_HN/Begun/'.format(metric)
makedirs(locBeg ,exist_ok=True)
begun = p_utils.getSecondList(locBeg)
locFin = saveloc + '{}AllDist_HN/Finished/'.format(metric)
makedirs(locFin ,exist_ok=True)
finished = p_utils.getSecondList(locFin)
for fin in tqdm(finished,desc='Load data'):
fname = locFin + fin + '.npy'
tempD = np.load(fname)
fname = locBeg + fin + '.npy'
otherInds = np.load(fname)
for dim in range(maxdim+1):
dataMat[dim][allNames_dict[fin],otherInds] = tempD[:,dim].ravel()
dataMat[dim][otherInds,allNames_dict[fin]] = tempD[:,dim].ravel()
allFin = list(allNames_dict[fin] for fin in finished)
# trim finished
allFin = np.array(list(allNames_dict[fin] for fin in finished))
T = volInds[all_times_vols[0]][-1]+1
# trim finished
someFin = []
#args.nVols = 15
if args.nVols > -1:
print('Trimming allFin from len {}'.format(len(allFin)))
for vi, voln in tqdm(enumerate(all_times_vols), desc='Trimming group embedding inputs.'):
bounds = (vi*T, (vi+1)*T-1)
vec = allFin[(allFin>=bounds[0]) * (allFin<=bounds[1])]
while len(vec)>args.nVols:
vecd = np.diff(vec)
vecs = np.sum(np.concatenate([vecd[:-1][:,None],vecd[1:][:,None]],axis=1),axis=1)
pop = np.argmin(vecs)
vec = np.delete(vec,pop+1)
someFin.extend(vec)
allFin = someFin
print('allFin trimmed to len {}'.format(len(allFin)))
for metric in metrics:
print('Make group embedding')
embedG = {}
for dim in range(maxdim+1):
groupG = dataMat[dim][allFin,:][:,allFin]
reducer = umap.UMAP(n_neighbors=300, n_components=2, metric=p_utils.donotripit, n_epochs=None, learning_rate=1.0, init='random', min_dist=0.3, spread=1.0, set_op_mix_ratio=1.0, local_connectivity=2.0, repulsion_strength=5.0, negative_sample_rate=2, transform_queue_size=16.0, a=None, b=None, random_state=None, metric_kwds=None, angular_rp_forest=False, target_n_neighbors=-1, target_metric='categorical', target_metric_kwds=None, target_weight=0.5, transform_seed=42, verbose=True)
embedG[dim] = reducer.fit(groupG)
print(np.histogram(embedG[dim].embedding_))
print(len(embedG))
for voln in all_times_vols:
print('Make {} embedding'.format(voln))
Dembs = {}
for dim in range(maxdim+1):
volFin = volInds[voln]
group = dataMat[dim][volFin,:][:,allFin]
print(group.shape)
Dembs[dim] = embedG[dim].transform(group)
print(np.histogram(Dembs[dim]))
if metric == 'diagram':
loc = saveloc + 'UMAPxyAllDiagram/'
elif metric == 'simplex':
loc = saveloc + 'UMAPxyAllSimplex/'
elif metric == 'strength':
loc = saveloc + 'UMAPxyAllStrength/'
print(metric)
print(loc)
makedirs(loc ,exist_ok=True)
file = (loc + str(voln) + '.pkl')
with open(file, 'wb') as sfile:
pickle.dump(Dembs,sfile, pickle.HIGHEST_PROTOCOL)
return
if __name__ == '__main__':
main()