-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathp_utils.py
684 lines (554 loc) · 19.3 KB
/
p_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
from os.path import join as OSjoin
from os.path import basename, splitext
import pathlib
import nibabel as nib
import numpy as np
import pycwt
import pywt
from pycwt.helpers import fft, fft_kwargs, rect
from scipy.signal import convolve2d
from scipy.spatial.distance import squareform, cdist
import scipy.sparse as sp
from persim import sliced_wasserstein as slw
from persim import bottleneck
from ripser import ripser
from numba import jit
import itertools
import networkx as nx
from pyitlib import discrete_random_variable as drv
from gudhi.representations import Landscape
import bisect
# Run parameters
maxdim = 1
truncDim = 0
TR = 1.5
knn = 333-5
# adjust data stact
buffLen = int(450)
mixLen = int(300)
trimLen = 120
trimLen0 = int(350)
trimLen1 = 120
trimEdges = [124, 894]
# cwt parameters
mother = pycwt.Morlet(6)
s0 = 6.5
dj = .32
J = 14
s1 = s0 * 2**(J * dj)
frq_edges = [2,13]
#What metrics to pursue
metrics = ['simplex']
# thresholds
TARGS = np.array((0.05,0.1,0.15,0.2))
TARGS_CEIL = 1
# for persistence landscape
L_resolution = 1000
L_numLandscapes = 5
L_fun = Landscape(resolution=L_resolution, num_landscapes=L_numLandscapes)
missingVoxels = [133, 296, 299, 302, 304]
def snapVal(myValue, myGrid=None):
ix = bisect.bisect_right(myGrid, myValue)
if ix == 0:
return myGrid[0]
elif ix == len(myGrid):
return myGrid[-1]
else:
return min(myGrid[ix - 1], myGrid[ix], key=lambda gridValue: abs(gridValue - myValue))
def snapInd(myValue, myGrid=None):
ix = bisect.bisect_right(myGrid, myValue)
if ix == 0:
return ix
elif ix == len(myGrid):
return ix-1
else:
return ix - 1 + np.argmin(np.abs(np.array([myGrid[ix-1], myGrid[ix]]) - myValue))
def importHCP(dpath, dname, flip=True, type0='float'):
fname = OSjoin(dpath,dname)
img = nib.load(fname)
print('For filename: ' + str(fname) + '\n' + 'img shape is: ' + str(img.shape))
D = img.get_fdata(dtype=type0) #projection
if flip:
D = D.T+0.0
print('Output shape is ' + str(D.shape))
return D
def centerScan(X):
X = X.T
X = X-np.mean(X,axis=0)
X = X/np.std(X,axis=0)
return X.T
def scaleScan(X):
X = X.T
X = X/np.std(X,axis=0)
return X.T
def getCWT_auxInfo(signal):
[_, sj, freqs, coi, _, _] = pycwt.cwt(signal, TR, s0=s0, dj=dj, J=J, wavelet=mother)
return sj, freqs, coi
def getCWT_auxInfoPlus(signal):
[_, sj, freqs, coi, _, _] = pycwt.cwt(signal, TR, s0=s0, dj=dj, J=J, wavelet=mother)
return sj, freqs, coi, mother, s0, dj, J, s1, TR
def getCWT(signal):
[coefficients, _, _, _, _, _ ] = pycwt.cwt(signal, TR, s0=s0, dj=dj, J=J, wavelet=mother)
power = np.absolute(coefficients)
return power
def getCWT_coeff(signal):
[coefficients, _, _, _, _, _] = pycwt.cwt(signal, TR, s0=s0, dj=dj, J=J, wavelet=mother)
return coefficients
def cwt2smooth(W, sj=[10,100]):
scales = np.ones([1, W.shape[1]]) * sj[:, None]
# Smooth the wavelet spectra before truncating.
S = mother.smooth(np.abs(W) ** 2 / scales, TR, dj, sj)
return S
def cwt2smooth_local(WW,n=None,F=None, win=None):
smooth = fft.ifft(F * fft.fft(WW, axis=1, **fft_kwargs(WW[0, :])),
axis=1, # Along Fourier frequencies
**fft_kwargs(WW[0, :], overwrite_x=True))
T = smooth[:, :n] # Remove possibly padded region due to FFT
T = convolve2d(T, win[:, np.newaxis], 'same') # Scales are "vertical"
return T.real
def wct2Stack(ins):
outs = 1-np.mean(ins[1].ravel()) # Coherence distance is 1- mean coherence
return [ins[0],outs]
def coher(ins,n=None,F=None,win=None,scales1=None):
#wct = pool.map(lambda x: np.abs( mapFun( W[x[0]]*W[x[1]].conj()/ scales1 ) )**2/ (S[x[0]]*S[x[1]]), list(tqdm(itertools.combinations(samps,2))))
[W1,W2,S1,S2] = ins
W12 = W1*W2.conj()
smooth = fft.ifft(F * fft.fft(W12 / scales1, axis=1, **fft_kwargs(W12[0, :])),
axis=1, # Along Fourier frequencies
**fft_kwargs(W12[0, :], overwrite_x=True))
T = smooth[:, :n] # Remove possibly padded region due to FFT
S12 = convolve2d(T, win[:, np.newaxis], 'same') # Scales are "vertical"
WCT = np.abs( S12 )**2/(S1*S2)
return WCT
def cross(ins):
[W1,W2] = ins
W12 = W1*W2.conj()
return W12
def coher_postCross(ins,n=None,F=None,win=None,scales1=None):
#wct = pool.map(lambda x: np.abs( mapFun( W[x[0]]*W[x[1]].conj()/ scales1 ) )**2/ (S[x[0]]*S[x[1]]), list(tqdm(itertools.combinations(samps,2))))
[W12,S1,S2] = ins
smooth = fft.ifft(F * fft.fft(W12 / scales1, axis=1, **fft_kwargs(W12[0, :])),
axis=1, # Along Fourier frequencies
**fft_kwargs(W12[0, :], overwrite_x=True))
T = smooth[:, :n] # Remove possibly padded region due to FFT
S12 = convolve2d(T, win[:, np.newaxis], 'same') # Scales are "vertical"
WCT = np.abs( S12 )**2/(S1*S2)
return WCT
def crossNorms(w12, frq_edges=None):
w12 = np.abs(w12)
[nW, nT] = w12.shape
nw12 = np.zeros(w12.shape)
for t in range(nT):
temp = w12[frq_edges[0]:frq_edges[1],t]
nw12[frq_edges[0]:frq_edges[1],t] = temp/np.sum(temp)
return nw12
def cwt2wct(W1, W2, S1, S2, sj):
# Now the wavelet transform coherence
W12 = W1 * W2.conj()
scales = np.ones([1, W1.shape[1]]) * sj[:, None]
S12 = wavelet.smooth(W12 / scales, TR, dj, sj)
WCT = np.abs(S12) ** 2 / (S1 * S2)
#aWCT = np.angle(W12)
return WCT#, aWCT
def getDirs(adir):
Dir = pathlib.Path(adir)
contents = []
for item in Dir.iterdir():
if item.is_dir():
contents.append(item.name)
return contents
def getFiles(adir,prefix=''):
Dir = pathlib.Path(adir)
contents = []
for item in Dir.iterdir():
if item.is_file() and item.name.find(prefix)==0:
contents.append(item.name)
return contents
def getFName(string):
return splitext(basename(string))[0]
def getLists(vloc = '.'):
#volunteers = ['102008', '102311', '119833', '284646', '786569']
#volunteers = ['105923' , '103818', '111312']
#volunteers = ['103818', '105923', '111312', '114823', '115320', '125525', '130518', '135528', '137128']
#volunteers = ['114823', '115320', '125525', '130518', '135528', '137128']
volunteers = getFiles(vloc)
print(volunteers)
restDirs = ['rfMRI_REST1_LR',
'rfMRI_REST1_RL',
'rfMRI_REST2_LR',
'rfMRI_REST2_RL']
taskDirs = ['tfMRI_EMOTION_LR',
'tfMRI_EMOTION_RL',
'tfMRI_GAMBLING_LR',
'tfMRI_GAMBLING_RL',
'tfMRI_LANGUAGE_LR',
'tfMRI_LANGUAGE_RL',
'tfMRI_MOTOR_LR',
'tfMRI_MOTOR_RL',
'tfMRI_RELATIONAL_LR',
'tfMRI_RELATIONAL_RL',
'tfMRI_SOCIAL_LR',
'tfMRI_SOCIAL_RL',
'tfMRI_WM_LR',
'tfMRI_WM_RL']
taskDirs = ['tfMRI_WM_LR','tfMRI_WM_RL','tfMRI_SOCIAL_LR','tfMRI_SOCIAL_RL','tfMRI_MOTOR_LR','tfMRI_MOTOR_RL']
#taskDirs = ['tfMRI_MOTOR_LR','tfMRI_MOTOR_RL']
#taskDirs = ['tfMRI_SOCIAL_LR','tfMRI_SOCIAL_RL']
EVtxt = ['tfMRI_EMOTION_LR/EVs/fear.txt',
'tfMRI_EMOTION_LR/EVs/neut.txt',
'tfMRI_EMOTION_RL/EVs/fear.txt',
'tfMRI_EMOTION_RL/EVs/neut.txt',
'tfMRI_GAMBLING_LR/EVs/loss.txt',
'tfMRI_GAMBLING_LR/EVs/win.txt',
'tfMRI_GAMBLING_RL/EVs/loss.txt',
'tfMRI_GAMBLING_RL/EVs/win.txt',
'tfMRI_LANGUAGE_LR/EVs/math.txt',
'tfMRI_LANGUAGE_LR/EVs/story.txt',
'tfMRI_LANGUAGE_RL/EVs/math.txt',
'tfMRI_LANGUAGE_RL/EVs/story.txt',
'tfMRI_MOTOR_LR/EVs/lf.txt',
'tfMRI_MOTOR_LR/EVs/lh.txt',
'tfMRI_MOTOR_LR/EVs/rf.txt',
'tfMRI_MOTOR_LR/EVs/rh.txt',
'tfMRI_MOTOR_LR/EVs/t.txt',
'tfMRI_MOTOR_RL/EVs/lf.txt',
'tfMRI_MOTOR_RL/EVs/lh.txt',
'tfMRI_MOTOR_RL/EVs/rf.txt',
'tfMRI_MOTOR_RL/EVs/rh.txt',
'tfMRI_MOTOR_RL/EVs/t.txt',
'tfMRI_RELATIONAL_LR/EVs/match.txt',
'tfMRI_RELATIONAL_LR/EVs/relation.txt',
'tfMRI_RELATIONAL_RL/EVs/match.txt',
'tfMRI_RELATIONAL_RL/EVs/relation.txt',
'tfMRI_SOCIAL_LR/EVs/mental.txt',
'tfMRI_SOCIAL_LR/EVs/rnd.txt',
'tfMRI_SOCIAL_RL/EVs/mental.txt',
'tfMRI_SOCIAL_RL/EVs/rnd.txt',
'tfMRI_WM_LR/EVs/0bk_body.txt',
'tfMRI_WM_LR/EVs/0bk_faces.txt',
'tfMRI_WM_LR/EVs/0bk_places.txt',
'tfMRI_WM_LR/EVs/0bk_tools.txt',
'tfMRI_WM_LR/EVs/2bk_body.txt',
'tfMRI_WM_LR/EVs/2bk_faces.txt',
'tfMRI_WM_LR/EVs/2bk_places.txt',
'tfMRI_WM_LR/EVs/2bk_tools.txt',
'tfMRI_WM_RL/EVs/0bk_body.txt',
'tfMRI_WM_RL/EVs/0bk_faces.txt',
'tfMRI_WM_RL/EVs/0bk_places.txt',
'tfMRI_WM_RL/EVs/0bk_tools.txt',
'tfMRI_WM_RL/EVs/2bk_body.txt',
'tfMRI_WM_RL/EVs/2bk_faces.txt',
'tfMRI_WM_RL/EVs/2bk_places.txt',
'tfMRI_WM_RL/EVs/2bk_tools.txt']
# Don't modify!! indices alligned to blockstxt
Blocks = ['fear',
'neut',
'loss',
'win',
'math',
'story',
'lf',
'lh',
'rf',
'rh',
't',
'match',
'relation',
'mental',
'rnd',
'0bk_body',
'0bk_faces',
'0bk_places',
'0bk_tools',
'2bk_body',
'2bk_faces',
'2bk_places',
'2bk_tools',
'rest']
Blockstxt = ['fear.txt',
'neut.txt',
'loss.txt',
'win.txt',
'math.txt',
'story.txt',
'lf.txt',
'lh.txt',
'rf.txt',
'rh.txt',
't.txt',
'match.txt',
'relation.txt',
'mental.txt',
'rnd.txt',
'0bk_body.txt',
'0bk_faces.txt',
'0bk_places.txt',
'0bk_tools.txt',
'2bk_body.txt',
'2bk_faces.txt',
'2bk_places.txt',
'2bk_tools.txt']
return volunteers, restDirs, taskDirs, EVtxt, Blocks, Blockstxt
_, restDirs, taskDirs, _, Blocks, _ = getLists(vloc='.')
goodStates = Blocks
goodStates = ['lf',
'lh',
'rf',
'rh',
't',
'mental',
'rnd',
'0bk_body',
'0bk_faces',
'0bk_places',
'0bk_tools',
'2bk_body',
'2bk_faces',
'2bk_places',
'2bk_tools',
'rest']
goodRepetitions = restDirs + taskDirs
def getSecondList(vloc = '.',prefix=''):
volunteers = getFiles(vloc, prefix=prefix)
return [vol[:-4] for vol in volunteers]
## Distance metric calcs
@jit
def ripit(s1,s2):
r1 = ripser(squareform(s1),distance_matrix=True)
r2 = ripser(squareform(s2),distance_matrix=True)
RR = slw(r1['dgms'][1],r2['dgms'][1],M=20)
return RR
@jit
def donotripit(s1,s2):
pass
def getMultiscaleIndexer(nP, nW):
# Lookup table translating all possible nd simplices into ordinal labels
# Possible simplices are limited by disconnected construction of the multi-layer graph
# Goal is to store boolean sparse matrices when indexed simplex is present
global indexer
indexer = {}
i0 = 0
for dim in range(truncDim,maxdim+1,1):
for w in range(nW):
vec = range(nP*w,nP*(w+1),1)
for i, s in enumerate(itertools.combinations(vec,dim+1), start=i0):
indexer[frozenset(np.sort(s))] = i
i0 = i+1
def getMultiscaleIndexerRanges(nP, nW):
# Lookup table translating all possible nd simplices into ordinal labels
# Possible simplices are limited by disconnected construction of the multi-layer graph
# Goal is to store boolean sparse matrices when indexed simplex is present
global indexerRanges, indexer0
indexerRanges = {}
i0 = 0
i00 = 0
for dim in range(truncDim,maxdim+1,1):
for w in range(nW):
vec = range(nP*w,nP*(w+1),1)
for i, s in enumerate(itertools.combinations(vec,dim+1), start=i0):
pass
i0 = i+1
indexerRanges[dim] = [i00,i0]
i00 = i0
print(indexerRanges)
indexer0 = np.zeros((1,i+1))
def getAllMulti(nP, nW):
getMultiscaleIndexer(nP,nW)
getMultiscaleIndexerRanges(nP,nW)
def graph2simplex(M, threshold):
#graph2simplex lists a simplices in a graph given some threshold
# M is an MxM undirected weighted graph
# Perform thresholding
Mt = M.copy()#nx.convert_matrix.to_numpy_matrix(M)
cutoff = threshold
#print('cutoff = ' + str(cutoff))
Mt[M>cutoff] = 0
Mt[M<=cutoff] = 1
#print(Mt)
#print(Mt[:5,:5])
#print('build initial graph')
Mx=nx.from_numpy_matrix(Mt.astype('bool'))
#print('graph built')
temp = [np.asarray(sorted(l)) for l in nx.find_cliques(Mx)]
mx_cliques = {}
for clq in temp:
if len(clq)>maxdim+1:
for vv in itertools.combinations(clq,maxdim+1):
mx_cliques[frozenset(vv)] = vv
else:
mx_cliques[frozenset(clq)] = clq
ln_mx_cliques = len(mx_cliques)
#print('printing sz_max_cliques_str {}'.format(sz_mx_cliques_str))
#print('Max cliques Found')
# initialize the simplex set
simplex = np.zeros((1,len(indexer)),dtype='float')
# assign minimimum edge distance for each nodes
some_list = list(indexer[frozenset([u])] for u in range(M.shape[0]))
node_connect = list(min(M[u,M[u,:]>0]) for u in range(M.shape[0]))
simplex[0,some_list] = node_connect
def deeperSimplex(u2, buff2):
v2 = list(u2)
sz = len(v2)
for vv in itertools.combinations(v2,sz-1):
szv = len(vv)
uu = frozenset(vv)
maxEdge = max(list( M[a,b] for a,b in itertools.combinations(vv,2) ))
buff2.append([uu, maxEdge])
if szv>2:
buff2 = deeperSimplex(uu,buff2)
return buff2
# create edges in the Hasse graph (diagram)
# Initialize Hess
for u in mx_cliques:
nodes = list(u)
sz = len(nodes)
if sz>2:
buff = []
maxEdge = max(list( M[a,b] for a,b in itertools.combinations(nodes,2) ))
buff.append([u, maxEdge])
buff = deeperSimplex(u,buff)
for bu in buff:
simplex[0, indexer[bu[0]] ] = bu[1]
elif sz==2:
maxEdge = M[nodes[0],nodes[1]]
simplex[0, indexer[u] ] = maxEdge
print(simplex)
print(simplex.data)
print('Finished edges')
return simplex
def calcSimplices(inputs):
# g is a graph
# output are labeled n-dimensional connected components
# found after thresholding g at target values
TT = inputs[0]
print('Start tt {}'.format(TT))
g = inputs[1]
H = graph2simplex(g,TARGS_CEIL)
G = sp.csr_matrix(H)
print('nnz for input {} and target {} is {}. out shape is {}:'.format(TT,TARGS_CEIL,G.nnz,G.shape))
print('****** Finish tt {}'.format(TT))
return G
def calcWeightedJaccard(inputs):
A = inputs[0].toarray()
B = inputs[1].toarray()
dist = []
Ap = A>0
Bp = B>0
oor = (Ap | Bp).astype('bool')
AA = indexer0.copy()
BB = indexer0.copy()
AA[Ap] = TARGS_CEIL-A[Ap]
BB[Bp] = TARGS_CEIL-B[Bp]
#print(np.sum(oor))
for dim in range(maxdim+1):
vec = oor.copy()
#print([vec.shape,indexerRanges[dim]])
vec[0,:indexerRanges[dim][0]] = False
vec[0,indexerRanges[dim][1]:] = False
#print([dim,np.sum(vec)])
numerator = np.min([AA[vec],BB[vec]],axis=0)
denomerator = np.max([AA[vec],BB[vec]],axis=0)
#print([numerator,numerator.shape])
dist.append(1-(np.sum(numerator)/np.sum(denomerator)))
#print(dist)
return dist
def calcLandscapeDistance(inputs):
A = inputs[0]
B = inputs[1]
dist = []
for dim in range(maxdim+1):
dist.append([])
for num in range(L_numLandscapes):
vec = np.arange(num*L_resolution,(num+1)*L_resolution)
#dist.append(np.sum(np.abs(A-B)))
dist[-1].append(np.sum(np.abs(A[dim][vec]-B[dim][vec])))
return dist
def slw2(indata, normalize = False):
outs = []
for dim in range(maxdim+1):
s1 = indata[0][dim]
s2 = indata[1][dim]
if normalize:
s1 /= np.sum(np.diff(s1,axis=1))
s2 /= np.sum(np.diff(s2,axis=1))
#print(['\n',s1,s2,'\n'])
outs.append( slw(s1,s2,M=20) )
return outs
def getRipped(indata, distance_matrix=True, maxdim=1, makeSquare = True, fixInf=False, threshold=0.999999, do_cocycles=False, doLandscape=False):
if makeSquare:
A = squareform(indata)
else:
A = indata
R = ripser(A, distance_matrix=distance_matrix, maxdim=maxdim, thresh = threshold, do_cocycles=do_cocycles)
if fixInf:
for r in range(len(R['dgms'])):
rr = R['dgms'][r]
irr = rr[:,1]==np.inf
#mrr = np.max(rr[~irr,:].ravel())
mrr = threshold
#print('Number of inf lifetimes for dim {} is {}.'.format(r,np.sum(irr)))
R['dgms'][r][irr,1] = mrr
if doLandscape:
R['landscape'] = {}
for dim in range(maxdim+1):
if len(R['dgms'][dim])>0:
L = L_fun.fit_transform([R['dgms'][dim]])[0]
else:
L = np.zeros(L.shape)
R['landscape'][dim] = L
return R
def doAgg(voln, adf):
volunteers, restDirs, taskDirs, EVtxt, Blocks, Blockstxt = getLists(vloc='')
print('adf is shape {}'.format(adf.shape))
print('Num possible picks is {}'.format(np.sum(adf.loc[:,'pick']>-1)))
print(np.histogram(adf.loc[:,'pick'].values))
print('max adf ind {}'.format(np.max(adf.index.values)))
# Look for which EVtxt states are in goodStates
pickInds = []
setgs = set(goodStates)
for bi , bs in enumerate(Blocks):
if bs in setgs:
print([bi,bs])
pickInds.append(adf.index.values[ (adf.loc[:,'pick']==bi).values])
pickInds[-1] = np.random.choice(pickInds[-1],size=2, replace=False)
inds = np.array(pickInds).ravel()
print('max inds is {}'.format(np.max(inds)))
print(np.histogram(np.array(inds)))
print('Inds histogram voln {}, found {} inds'.format(voln, len(inds)))
return inds
def getFlatBrain():
# load data
with open('flatBrainMasks.pkl','rb')as file:
masks = pickle.load(file)
# draw all polygons
polyset = {}
sides = ['L','R']
ylim = [0,0]
xlim = [0,0]
for side in [1,2]:
sideMask = masks['brainlocs']==side
segs = np.unique(masks['gordon'][sideMask])
segs = segs[~np.isnan(segs)]
segs = segs[segs>0].astype('int')
for seg in segs:
polyset[seg] = []
#asegment = masks['gordon']==seg
#asegmentside = asegment[sideMask]
#polyset[sides[side-1]][seg]['points'] = masks['vert'+sides[side]][asegmentside,:2]
#polyset[sides[side-1]][seg]['point_inds'] = set(np.arange(len(asegmentside))[asegmentside])
#polyset[sides[side-1]][seg]['polys'] = []
segsArray = masks['gordon'][sideMask].astype('int')
faces = masks['face'+sides[side-1]]
for face in faces:
seg = np.unique([segsArray[i-1] for i in face])
kk = len(seg)
if kk==1 and not any(seg<1):
seg = seg[0]
temp = np.array([masks['vert'+sides[side-1]][ff,:2] for ff in face])
if not any(np.all(temp==0,axis=1)) and not any(pdist(temp)>10):
polyset[seg].append(temp)
ylim[0] = min(ylim[0],min(temp[:,1]))
ylim[1] = max(ylim[1],max(temp[:,1]))
xlim[0] = min(xlim[0],min(temp[:,0]))
xlim[1] = max(xlim[1],max(temp[:,0]))
return masks, polyset, ylim, xlim