forked from aliyasineser/stereoDepth
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsingle_camera_calibration.py
71 lines (53 loc) · 3.16 KB
/
single_camera_calibration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import numpy as np
import cv2
import glob
import argparse
from calibration_store import save_coefficients
# termination criteria
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
def calibrate(dirpath, prefix, image_format, square_size, width=9, height=6):
""" Apply camera calibration operation for images in the given directory path. """
# prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(8,6,0)
objp = np.zeros((height*width, 3), np.float32)
objp[:, :2] = np.mgrid[0:width, 0:height].T.reshape(-1, 2)
objp = objp * square_size # Create real world coords. Use your metric.
# Arrays to store object points and image points from all the images.
objpoints = [] # 3d point in real world space
imgpoints = [] # 2d points in image plane.
# Directory path correction. Remove the last character if it is '/'
if dirpath[-1:] == '/':
dirpath = dirpath[:-1]
# Get the images
images = glob.glob(dirpath+'/' + prefix + '*.' + image_format)
# Iterate through the pairs and find chessboard corners. Add them to arrays
# If openCV can't find the corners in an image, we discard the image.
for fname in images:
img = cv2.imread(fname)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Find the chess board corners
ret, corners = cv2.findChessboardCorners(gray, (width, height), None)
# If found, add object points, image points (after refining them)
if ret:
objpoints.append(objp)
corners2 = cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria)
imgpoints.append(corners2)
# Draw and display the corners
# Show the image to see if pattern is found ! imshow function.
img = cv2.drawChessboardCorners(img, (width, height), corners2, ret)
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None, None)
return [ret, mtx, dist, rvecs, tvecs]
if __name__ == '__main__':
# Check the help parameters to understand arguments
parser = argparse.ArgumentParser(description='Camera calibration')
parser.add_argument('--image_dir', type=str, required=True, help='image directory path')
parser.add_argument('--image_format', type=str, required=True, help='image format, png/jpg')
parser.add_argument('--prefix', type=str, required=True, help='image prefix')
parser.add_argument('--square_size', type=float, required=False, help='chessboard square size')
parser.add_argument('--width', type=int, required=False, help='chessboard width size, default is 9')
parser.add_argument('--height', type=int, required=False, help='chessboard height size, default is 6')
parser.add_argument('--save_file', type=str, required=True, help='YML file to save calibration matrices')
args = parser.parse_args()
# Call the calibraton and save as file. RMS is the error rate, it is better if rms is less than 0.2
ret, mtx, dist, rvecs, tvecs = calibrate(args.image_dir, args.prefix, args.image_format, args.square_size, args.width, args.height)
save_coefficients(mtx, dist, args.save_file)
print("Calibration is finished. RMS: ", ret)