-
Notifications
You must be signed in to change notification settings - Fork 0
/
handpose_simon_backend.py
216 lines (154 loc) · 7.25 KB
/
handpose_simon_backend.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
'''
Adapted from the MonoHand3D codebase for the MonocularRGB_3D_Handpose project (github release)
This script uses the 2D hand joint estimation network by Simon et al. (Available through the Openpose project)
@author: Paschalis Panteleris ([email protected])
'''
import sys
sys.path.append("lib")
import time
import os
import cv2
import numpy as np
import PyCeresIK as IK
from common import image
from common.opencv_grabbers import OpenCVGrabber
from common.calibrate import OpenCVCalib2CameraMeta, LoadOpenCVCalib
from common import factory
from common import pipeline
import PyMBVCore as Core
import PyJointTools as jt
import PyOpenPose as OP
from common import mva19
def mono_hand_loop(acq, outSize, config, track=False, paused=False, with_renderer=False):
print("Initialize WACV18 3D Pose estimator (IK)...")
pose_estimator = factory.HandPoseEstimator(config)
if with_renderer:
print("Initialize Hand Visualizer...")
hand_visualizer = pipeline.HandVisualizer(factory.mmanager, outSize)
print("Initialize openpose. Net output size",outSize,"...")
op = OP.OpenPose((160, 160), config["handnet_dims"], tuple(outSize), "COCO", config["OPENPOSE_ROOT"] + os.sep + "models" + os.sep, 0,
False, OP.OpenPose.ScaleMode.ZeroToOne, False, True)
left_hand_model = config["model_left"]
started = False
delay = {True: 0, False: 1}
ik_ms = est_ms = 0
p2d = bbox = None
count = 0
mbv_viz = opviz = None
smoothing = config.get("smoothing", 0)
boxsize = config["handnet_dims"][0]
stride = 8
peaks_thre = config["peaks_thre"]
print("Entering main Loop.")
while True:
try:
imgs, clbs = acq.grab()
if imgs is None or len(imgs)==0:
break
except Exception as e:
print("Failed to grab", e)
break
st = time.time()
bgr = imgs[0]
clb = clbs[0]
# compute kp using model initial pose
points2d = pose_estimator.ba.decodeAndProject(pose_estimator.model.init_pose, clb)
oldKp = np.array(points2d).reshape(-1, 2)
if bbox is None:
bbox = config["default_bbox"]
score = -1
result_pose = None
crop_viz = None
# STEP2 detect 2D joints for the detected hand.
if started and bbox is not None:
x,y,w,h = bbox
# print("BBOX: ",bbox)
crop = bgr[y:y+h,x:x+w]
img, pad = mva19.preprocess(crop, boxsize, stride)
t = time.time()
op.detectHands(bgr, np.array([[0,0,0,0]+bbox],dtype=np.int32))
op_ms = (time.time() - t) * 1000.0
opviz = op.render(np.copy(bgr))
cv2.imshow("OPVIZ", opviz)
leftHands, rightHands = op.getKeypoints(op.KeypointType.HAND)
if rightHands is not None:
keypoints = rightHands[0][:,:3]
mask = keypoints[:, 2] < peaks_thre
keypoints[mask] = [0, 0, 1.0]
if track:
keypoints[mask, :2] = oldKp[mask]
keypoints[:, 2] = keypoints[:, 2]**3
rgbKp = IK.Observations(IK.ObservationType.COLOR, clb, keypoints)
obsVec = IK.ObservationsVector([rgbKp, ])
t = time.time()
score, res = pose_estimator.estimate(obsVec)
ik_ms = (time.time() - t)
# print(count,)
pose_estimator.print_report()
if track:
result_pose = list(smoothing * np.array(pose_estimator.model.init_pose) + (1.0 - smoothing) * np.array(res))
else:
result_pose = list(res)
# score is the residual, the lower the better, 0 is best
# -1 is failed optimization.
if track:
if -1 < score:# < 20000:
pose_estimator.model.init_pose = Core.ParamVector(result_pose)
else:
print("\n===>Reseting init position for IK<===\n")
pose_estimator.model.reset_pose()
if score > -1: # compute result points
p2d = np.array(pose_estimator.ba.decodeAndProject(Core.ParamVector(result_pose), clb)).reshape(-1, 2)
# scale = w/config.boxsize
bbox = mva19.update_bbox(p2d,bgr.shape[1::-1])
viz = np.copy(bgr)
viz2d = np.zeros_like(bgr)
if started and result_pose is not None:
viz2d = mva19.visualize_2dhand_skeleton(viz2d, keypoints, thre=peaks_thre)
cv2.imshow("2D CNN estimation",viz2d)
header = "FPS OPT+VIZ %03d, OPT %03fms (CNN %03fms, 3D %03fms)"%(1/(time.time()-st),(est_ms+ik_ms),est_ms, ik_ms)
if with_renderer:
hand_visualizer.render(pose_estimator.model, Core.ParamVector(result_pose), clb)
mbv_viz = hand_visualizer.getDepth()
cv2.imshow("MBV VIZ", mbv_viz)
mask = mbv_viz != [0, 0, 0]
viz[mask] = mbv_viz[mask]
else:
viz = mva19.visualize_3dhand_skeleton(viz, p2d)
pipeline.draw_rect(viz, "Hand", bbox, box_color=(0, 255, 0), text_color=(200, 200, 0))
else:
header = "Press 's' to start, 'r' to reset pose, 'p' to pause frame."
cv2.putText(viz, header, (20, 20), 0, 0.7, (50, 20, 20), 1, cv2.LINE_AA)
cv2.imshow("3D Hand Model reprojection", viz)
key = cv2.waitKey(delay[paused])
if key & 255 == ord('p'):
paused = not paused
if key & 255 == ord('q'):
break
if key & 255 == ord('r'):
print("\n===>Reseting init position for IK<===\n")
pose_estimator.model.reset_pose()
bbox = config['default_bbox']
print("RESETING BBOX",bbox)
if key & 255 == ord('s'):
started = not started
count += 1
if __name__ == '__main__':
config = {
"model": "models/hand_skinned.xml", "model_left": False,
"model_init_pose": [-109.80840809323652, 95.70022984677065, 584.613931114289, 292.3322807284121, -1547.742897973965, -61.60146881490577, 435.33025195547793, 1.5707458637241434, 0.21444030289465843, 0.11033385117688158, 0.021952050059337137, 0.5716581133215294, 0.02969734913698679, 0.03414155945643072, 0.0, 1.1504613679382742, -0.5235922979328, 0.15626331136368257, 0.03656410417088128, 8.59579088582312e-07, 0.35789633949684985, 0.00012514308785717494, 0.005923001258945023, 0.24864102398139007, 0.2518954858979162, 0.0, 3.814694400000002e-13],
"model_map": IK.ModelAwareBundleAdjuster.HAND_SKINNED_TO_OP_RIGHT_HAND,
"OPENPOSE_ROOT": os.environ["OPENPOSE_ROOT"],
"handnet_dims": (304, 304),
"ba_iter": 200,
"padding": 0.3,
"minDim": 170,
"peaks_thre": 0.1,
"smoothing": 0.2,
# default bbox for the hand location
"default_bbox": [170,80,300,300],
}
# NOTE: You can replace the camera id with a video filename.
acq = OpenCVGrabber(0, calib_file="res/calib_webcam_mshd_vga.json")
acq.initialize()
mono_hand_loop(acq, (640,480), config, track=True, with_renderer=True)