-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathSBSGenericDetector.cxx
1932 lines (1763 loc) · 78.4 KB
/
SBSGenericDetector.cxx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
////////////////////////////////////////////////////////////////////////////////
//
// SBSGenericDetector
//
//
////////////////////////////////////////////////////////////////////////////////
#include "SBSGenericDetector.h"
#include "THaEvData.h"
#include "THaDetMap.h"
#include "VarDef.h"
#include "VarType.h"
#include "THaTrack.h"
#include "TClonesArray.h"
#include "TDatime.h"
#include "TMath.h"
#include "SBSManager.h"
#include "THaCrateMap.h"
#include "Helper.h"
#include "TSystem.h"
#include "Database.h"
#include "THaApparatus.h"
#include "TString.h"
#include <cstring>
#include <iostream>
#include <iomanip>
ClassImp(SBSGenericDetector);
///////////////////////////////////////////////////////////////////////////////
/// SBSGenericDetector constructor
///
/// The default is to have single-valued ADC with no TDC information
/// Sub-classes can change this accordingly.
SBSGenericDetector::SBSGenericDetector( const char* name, const char* description,
THaApparatus* apparatus ) :
THaNonTrackingDetector(name,description,apparatus), fNrows(0),fNcolsMax(0),
fNlayers(0), fModeADC(SBSModeADC::kADCSimple), fModeTDC(SBSModeTDC::kNone),
fDisableRefADC(true),fDisableRefTDC(true),
fStoreEmptyElements(false), fIsMC(false), fChanMapStart(0),
fCoarseProcessed(false), fFineProcessed(false),
fConst(1.0), fSlope(0.0), fAccCharge(0.0), fStoreRawHits(false)
{
// Constructor.
fDecodeRFtime = false;
fDecodeTrigTime = false;
fElemID_RFtime = -1;
fElemID_TrigTime = -1;
fF1TDCminraw = 67000;
fF1TDCmaxraw = 0;
}
///////////////////////////////////////////////////////////////////////////////
/// Default Destructor
SBSGenericDetector::~SBSGenericDetector()
{
// Destructor. Removes internal arrays and global variables.
if( fIsSetup )
RemoveVariables();
fElementGrid.clear();
DeleteContainer(fElements);
DeleteContainer(fRefElements);
}
///////////////////////////////////////////////////////////////////////////////
/// SetModeADC
void SBSGenericDetector::SetModeADC(SBSModeADC::Mode mode)
{
fModeADC = mode;
// Only the multi-function ADC is expected to have reference ADC
SetDisableRefADC(fModeADC != SBSModeADC::kADC);
}
///////////////////////////////////////////////////////////////////////////////
/// Read SBSGenericDetector Database
Int_t SBSGenericDetector::ReadDatabase( const TDatime& date )
{
// Read this detector's parameters from the database file 'fi'.
// This function is called by THaDetectorBase::Init() once at the
// beginning of the analysis.
// 'date' contains the date/time of the run being analyzed.
// We can use this name here for logs
static const char* const here = "ReadDatabase()";
FILE* file = OpenFile( date );
if( !file ) return kFileError;
// Read in required geometry variables, which include fOrigin and fSize
Int_t err = ReadGeometry( file, date, true );
if( err ) {
fclose(file);
return err;
}
// Some temporary variables which we'll use to read in the database
std::vector<Int_t> detmap, chanmap;
std::vector<Double_t> xyz, dxyz;
//Double_t angle = 0.0;
Int_t model_in_detmap = 0;
Int_t nrows = 1, nlayers = 1;
// In the following two optional parameters a pattern can be specified, where
// if the number of entries corresponds to one or more row but less than
// the total nnrows, the pattern will repeat until all nrows are described.
// [Optional] specify variable number or columns per row, 1 entry per row
// [Optional] specify starting offset for rows. Expects 3*n entries, where
// 0 <= n <= nrows
std::vector<Double_t> row_offset_pattern;
// Specify number of columns per row. If less than nrows entries provided
// the pattern will repeat to fill up nrows entries
std::vector<Int_t> ncols;
Int_t is_mc = 0;
// Read mapping/geometry/configuration parameters
fChanMapStart = 0;
DBRequest config_request[] = {
{ "detmap", &detmap, kIntV }, ///< Detector map
{ "model_in_detmap", &model_in_detmap, kInt, 0, true }, ///< Optional Does detector map have module numbers?
{ "chanmap", &chanmap, kIntV, 0, true }, ///< Optional channel map
{ "start_chanmap",&fChanMapStart, kInt, 0, true}, ///< Optional start of channel numbering
{ "nrows", &nrows, kInt, 1, true }, ///< [Optional] Number of rows in detector
{ "ncols", &ncols, kIntV, 0, false }, ///< Number of columns in detector
{ "nlayers", &nlayers, kInt, 1, true }, ///< [Optional] Number of layers/divisions in each element of the detector
{ "xyz", &xyz, kDoubleV, 3 }, ///< If only 3 values specified, then assume as stating point for fist block and distribute according to dxyz
{ "dxdydz", &dxyz, kDoubleV, 3}, ///< element spacing (dx,dy,dz)
{ "row_offset_pattern", &row_offset_pattern, kDoubleV, 0, true }, ///< [Optional] conflicts with ncols
{ "is_mc", &is_mc, kInt, 0, true }, ///< Optional channel map
{ "F1_RollOver", &fF1_RollOver, kInt, 0, true }, ///<
{ "F1_TimeWindow", &fF1_TimeWindow, kInt, 0, true }, ///<
{ "crate_rftime", &fCrate_RFtime, kUInt, 0, 1, 1 },
{ "slot_rftime", &fSlot_RFtime, kUInt, 0, 1, 1 },
{ "chan_rftime", &fChan_RFtime, kUInt, 0, 1, 1 },
{ "crate_trigtime", &fCrate_TrigTime, kUInt, 0, 1, 1 },
{ "slot_trigtime", &fSlot_TrigTime, kUInt, 0, 1, 1 },
{ "chan_trigtime", &fChan_TrigTime, kUInt, 0, 1, 1 },
{ 0 } ///< Request must end in a NULL
};
// How were these default values determined?
// They appear to be empirically determined; however, the accuracy might be off by ~1-2 LSBs:
fF1_RollOver = 64965;
fF1_TimeWindow = 13000;
//Why shouldn't this be 65536 for a 16-bit readout?
//fF1_RollOver = 65536;
//fF1_TimeWindow = 13000;
err = LoadDB( file, date, config_request, fPrefix );
if(err) {
fclose(file);
return err;
}
if(is_mc){// if this is simulated data, we do not care about the reference channel
fIsMC = true;
fDisableRefADC = true;
fDisableRefTDC = true;
}
fSizeRow = dxyz[0];// in transport coordinates, row # varies with x axis
fSizeCol = dxyz[1];// in transport coordinates, col # varies with y axis
// Sanity checks (make sure there were no inconsistent values entered.
if( !err && (nrows <= 0 || ncols.empty() || int(ncols.size()) > nrows || nlayers <= 0) ) {
Error( Here(here), "Illegal number of rows, columns and/or layers: %d %d %d"
". Must be > 0. Please fix the database.", nrows, int(ncols.size()), nlayers);
fclose(file);
return kInitError;
}
// Padd the ncols vector with a repeating pattern if not enough entries were
// specified.
Int_t ntemp = ncols.size();
for(Int_t r = ntemp, i = 0; r < nrows; r++,i++) {
if(ncols[i%ntemp]<=0) {
Error( Here(here), "ncols cannot have negative entries!");
fclose(file);
return kInitError;
}
ncols.push_back(ncols[i%ntemp]);
}
// Padd the row_offset_pattern if not enough rows were specified.
if(!row_offset_pattern.empty()) {
if(int(row_offset_pattern.size()) > 3*nrows || row_offset_pattern.size()%3 != 0) {
Error( Here(here), "Inconsistent number of entries in row_offset_pattern "
" specified. Expected 3*nrows = %d but got %d",3*nrows,
int(row_offset_pattern.size()));
fclose(file);
return kInitError;
}
ntemp = row_offset_pattern.size()/3;
for(int r = ntemp, i = 0; r < nrows; r++,i++) {
row_offset_pattern.push_back(row_offset_pattern[(i*3 )%ntemp]);
row_offset_pattern.push_back(row_offset_pattern[(i*3+1)%ntemp]);
row_offset_pattern.push_back(row_offset_pattern[(i*3+2)%ntemp]);
}
}
Int_t nelem = 0;
for(int r = 0; r < nrows; r++) {
nelem += ncols[r]*nlayers;
}
// Safety check, make sure we didn't somehow change number of entries
assert(int(ncols.size()) == nrows);
// Reinitialization only possible for same basic configuration
if( !err ) {
if( fIsInit) {
if(nelem != fNelem || nrows != fNrows ||
ncols.size() != fNcols.size() || nlayers != fNlayers ) {
Error( Here(here), "Cannot re-initalize with different number of rows, "
"cols or layers. nelem(%d vs %d), nrows( %d vs %d), ncols(%d vs %d),"
" nlayers(%d vs %d). Detector not re-initialized.",
fNelem, nelem, fNrows, nrows, int(fNcols.size()), int(ncols.size()),
fNlayers, nlayers);
fclose(file);
return kInitError;
} else {
for(int r = 0; r < nrows; r++) {
if(fNcols[r] != ncols[r]) {
Error( Here(here), "Cannot re-initalize with different number of "
" columns ( %d != %d ) for row %d.",fNcols[r],ncols[r], r);
fclose(file);
return kInitError;
}
}
}
}
fNelem = nelem;
fNrows = nrows;
fNcols.clear();
fNcols.reserve(nrows);
for(int r = 0; r < nrows; r++) {
fNcols.push_back(ncols[r]);
if(ncols[r]>fNcolsMax)
fNcolsMax = ncols[r];
}
fNlayers = nlayers;
}
if(err) {
fclose(file);
return err;
}
// Find out how many channels got skipped:
int nskipped = 0;
int nrefchans = 0;
if( !chanmap.empty() ) {
for(auto i : chanmap) {
if (i == -1) nskipped++;
if (i == -1000) nrefchans++;
}
}
// Clear out the old channel map before reading a new one
fChanMap.clear();
Int_t detmap_flags = THaDetMap::kFillRefIndex; // Specify reference index/channel
if(model_in_detmap) {
detmap_flags |= THaDetMap::kFillModel;
}
if( FillDetMap(detmap, detmap_flags, here) <= 0 ) {
err = kInitError; // Error already printed by FillDetMap
} else {
nelem = fDetMap->GetTotNumChan() - nskipped - nrefchans ; // Exclude skipped channels in count
if( WithTDC() && WithADC() ) {
if(nelem != 2*fNelem ) {
Error( Here(here), "Number of crate module channels (%d) "
"inconsistent with 2 channels per block (%d, expected)", nelem,
fNelem );
err = kInitError;
}
} else if ( nelem != fNelem) {
Error( Here(here), "Number of crate module channels (%d) "
"inconsistent with number of blocks (%d) nskipped (%d) nrefchans (%d) ", nelem, fNelem , nskipped,nrefchans);
err = kInitError;
}
}
if(err) {
fclose(file);
return err;
}
if( !chanmap.empty() ) {
// If a map is found in the database, ensure it has the correct size
Int_t cmapsize = chanmap.size();
if( WithTDC() && WithADC() ) {
if(cmapsize - nskipped- nrefchans != 2*fNelem ) {
Error( Here(here), "Number of logical channel to detector block map (%d) "
"inconsistent with 2 channels per block (%d, expected)", cmapsize,
2*fNelem );
err = kInitError;
}
} else if ( cmapsize - nskipped- nrefchans != fNelem) {
Error( Here(here), "Number of logical channel to detector block map (%d) "
"inconsistent with number of blocks (%d)", cmapsize, fNelem );
err = kInitError;
}
}
Int_t NRefTDCElem=0;
Int_t NRefADCElem=0;
std::vector<Int_t> RefMode; //< Reftime MODE tdc =0 , adc = 1
if( !err ) {
// Here, we will build our "local" channel map and check to make sure
// we have the right number of adc channels, and when using TDCs, the
// right number of TDC channels.
// The map we are interested in is module channel to block number, where
// the numbering of the blocks starts on the top left corner when standing
// behind the detector and facing the target. We turn this into a row
// and column, layer as appropriate.
//
//
Int_t nmodules = GetDetMap()->GetSize();
assert( nmodules > 0 );
fChanMap.resize(nmodules);
fModuleRefTimeFlag.resize(nmodules);
fRefChanMap.resize(nmodules);
fRefChanLo.resize(nmodules);
fRefChanHi.resize(nmodules);
WithDefaultTZ(Long64_t tloc = date.Convert());
Decoder::THaCrateMap *cratemap = SBSManager::GetInstance()->GetCrateMap(tloc);
Int_t kr = 0,ka = 0, kt = 0, km = 0, k = 0;
for( Int_t i = 0; i < nmodules && !err; i++) {
Int_t krmod = 0;
fModuleRefTimeFlag[i] = kFALSE;
fRefChanLo[i]=0;
fRefChanHi[i]=0;
THaDetMap::Module *d = GetDetMap()->GetModule(i);
// If the model number was not listed in the detmap section, fill it
// in from the crate map
if(!model_in_detmap) {
d->SetModel(cratemap->getModel(d->crate,d->slot));
}
if( model_in_detmap) {
if (d->GetModel() == 526) {
d->MakeTDC();
} else {
Error( Here(here), "Need to modify SBSGenericDetector to specify whether TDC or ADC for module %d.", i);
}
}
if(!d->IsADC() && !d->IsTDC()) {
// An unknown module was specified, complain and exit
Error( Here(here), "Unknown module specified for module %d.", i);
err = kInitError;
continue;
}
Int_t nchan = d->GetNchan();
// If this module has the reference channels, just create instances
// of reference elements that will contain their data.
if ( nchan > 0 ) {
fChanMap[i].resize(nchan);
fRefChanMap[i].resize(nchan);
for(Int_t chan = 0; chan < nchan&& !err; chan++,k++) {
if(!chanmap.empty() ) {
// Skip disabled channels
fRefChanMap[i][chan]=-1;
fChanMap[i][chan]=-1;
if(chanmap[k]==-1) {
fChanMap[i][chan] = -1;
continue;
}
if(chanmap[k]==-1000) {
fModuleRefTimeFlag[i] = kTRUE;
if(d->IsADC()) {
RefMode.push_back(1);
fDisableRefADC = kFALSE;
NRefADCElem++;
} else {
RefMode.push_back(0);
fDisableRefTDC = kFALSE;
NRefTDCElem++;
}
fRefChanMap[i][chan]=kr;
if ( krmod==0) fRefChanLo[i]=chan+d->lo;
if ( krmod>=0) fRefChanHi[i]=chan+d->lo;
if( d->crate == fCrate_RFtime && d->slot == fSlot_RFtime && d->lo + chan == fChan_RFtime ){
fElemID_RFtime = kr;
fRFtimeIsRef = true;
fDecodeRFtime = true;
}
if( d->crate == fCrate_TrigTime && d->slot == fSlot_TrigTime && d->lo + chan == fChan_TrigTime ){
fElemID_TrigTime = kr;
fTrigTimeIsRef = true;
fDecodeTrigTime = true;
}
kr++;
krmod++;
} else { //NOT a reference channel!
km = chanmap[k] - fChanMapStart;
if( d->crate == fCrate_RFtime && d->slot == fSlot_RFtime && d->lo + chan == fChan_RFtime ){
fElemID_RFtime = km + fChanMapStart; //need to add chanmap start back into element ID consistent with how the elements are constructed below:
fRFtimeIsRef = false;
fDecodeRFtime = true;
}
if( d->crate == fCrate_TrigTime && d->slot == fSlot_TrigTime && d->lo + chan == fChan_TrigTime ){
fElemID_TrigTime = km + fChanMapStart;
fTrigTimeIsRef = false;
fDecodeTrigTime = true;
}
}
} else {
km = d->IsADC() ? ka : kt;
}
// Count ADC and TDC channels separately
if(d->IsADC()) {
if(chanmap[k]!=-1000) ka++;
} else {
if(chanmap[k]!=-1000) kt++;
}
assert( km < fNelem );
assert( km >= 0);
if(chanmap[k]!=-1000) fChanMap[i][chan] = km;
}
} else {
Error( Here(here), "No channels defined for module %d.", i);
fChanMap.clear();
err = kInitError;
}
}
if(WithADC() && ka != fNelem) {
Error( Here(here), "Inconsistent ADC channels, found %d, expected %d.", ka,fNelem);
return kInitError;
}
if(WithTDC() && kt != fNelem) {
Error( Here(here), "Inconsistent TDC channels, found %d, expected %d.", kt,fNelem);
return kInitError;
}
}
// At this point, if an error has been encountered, don't bother continuing,
// complain and return the error now.
if(err) {
fclose(file);
return err;
}
std::cout << "Detector \"" << GetApparatus()->GetName() << "." << GetName() << "\": (Decode RF time, Decode Trig. time)=(" << fDecodeRFtime << ", " << fDecodeTrigTime << ")"
<< std::endl;
//
// ADC and TDC reference time parameters
std::vector<Double_t> reftdc_offset, reftdc_cal, reftdc_GoodTimeCut;
std::vector<Double_t> refadc_ped, refadc_gain, refadc_conv, refadc_thres, refadc_GoodTimeCut;
std::vector<Double_t> refadc_AmpToIntRatio;
std::vector<Int_t> refadc_FixThresBin,refadc_NSB,refadc_NSA,refadc_NPedBin;
// Read calibration parameters
// Read adc pedestal and gains, and tdc offset and calibration
// (should be organized by logical channel number, according to channel map)
std::vector<Double_t> tdc_offset, tdc_cal, tdc_GoodTimeCut;
std::vector<Double_t> adc_ped, adc_gain, adc_conv, adc_thres, adc_timeoffset, adc_GoodTimeCut;
std::vector<Double_t> adc_AmpToIntRatio;
std::vector<Int_t> adc_FixThresBin,adc_NSB,adc_NSA,adc_NPedBin;
std::vector<DBRequest> vr;
if(WithADC()) {
vr.push_back({ "adc.pedestal", &adc_ped, kDoubleV, 0, 1 });
vr.push_back({ "adc.gain", &adc_gain, kDoubleV, 0, 1 });
vr.push_back({ "adc.conv", &adc_conv, kDoubleV, 0, 1 });
vr.push_back({ "adc.thres", &adc_thres, kDoubleV, 0, 1 });
vr.push_back({ "adc.timeoffset", &adc_timeoffset, kDoubleV, 0, 1 });
vr.push_back({ "adc.AmpToIntRatio", &adc_AmpToIntRatio, kDoubleV, 0, 1 });
vr.push_back({ "adc.FixThresBin", &adc_FixThresBin, kIntV, 0, 1 });
vr.push_back({ "adc.NSB", &adc_NSB, kIntV, 0, 1 });
vr.push_back({ "adc.NSA", &adc_NSA, kIntV, 0, 1 });
vr.push_back({ "adc.NPedBin", &adc_NPedBin, kIntV,0, 1 });
vr.push_back({ "adc.GoodTimeCut", &adc_GoodTimeCut, kDoubleV, 0, 1 });
if (!fDisableRefADC) {
vr.push_back({ "refadc.pedestal", &refadc_ped, kDoubleV, 0, 1 });
vr.push_back({ "refadc.gain", &refadc_gain, kDoubleV, 0, 1 });
vr.push_back({ "refadc.conv", &refadc_conv, kDoubleV, 0, 1 });
vr.push_back({ "refadc.thres", &refadc_thres, kDoubleV, 0, 1 });
vr.push_back({ "refadc.AmpToIntRatio", &refadc_AmpToIntRatio, kDoubleV, 0, 1 });
vr.push_back({ "refadc.FixThresBin", &refadc_FixThresBin, kIntV, 0, 1 });
vr.push_back({ "refadc.NSB", &refadc_NSB, kIntV, 0, 1 });
vr.push_back({ "refadc.NSA", &refadc_NSA, kIntV, 0, 1 });
vr.push_back({ "refadc.NPedBin", &refadc_NPedBin, kIntV,0, 1 });
vr.push_back({ "refadc.GoodTimeCut", &refadc_GoodTimeCut, kDoubleV, 0, 1 });
}
}
if(WithTDC()) {
vr.push_back({ "tdc.offset", &tdc_offset, kDoubleV, 0, 1 });
vr.push_back({ "tdc.calib", &tdc_cal, kDoubleV, 0, 1 });
vr.push_back({ "tdc.GoodTimeCut", &tdc_GoodTimeCut, kDoubleV, 0, 1 });
if (!fDisableRefTDC) {
vr.push_back({ "reftdc.offset", &reftdc_offset, kDoubleV, 0, 1 });
vr.push_back({ "reftdc.calib", &reftdc_cal, kDoubleV, 0, 1 });
vr.push_back({ "reftdc.GoodTimeCut", &reftdc_GoodTimeCut, kDoubleV, 0, 1 });
}
};
vr.push_back({0});
err = LoadDB( file, date, vr.data(), fPrefix );
// We are done reading from the file, so we can safely close it now
fclose(file);
// Again, no need to continue on errors
if( err )
return err;
std::cout << " Nreftdc = " << NRefTDCElem<< " Nrefadc = " << NRefADCElem << std::endl;
// Check that there were either only 1 calibratoin value specified per key
// or fNelements
if (!fDisableRefTDC) {
if(reftdc_offset.empty()) { // set all offset to zero
ResetVector(reftdc_offset,Double_t(0.0),NRefTDCElem);
} else if(reftdc_offset.size() == 1) { // expand vector to specify calibration for all elements
Double_t temp=reftdc_offset[0];
ResetVector(reftdc_offset,temp,NRefTDCElem);
} else if ( (int)reftdc_offset.size() != NRefTDCElem ) {
Error( Here(here), "Inconsistent number of reftdc.offset specified. Expected "
"%d but got %d",NRefTDCElem,int(reftdc_offset.size()));
return kInitError;
}
//
if(reftdc_GoodTimeCut.empty()) { // set all GoodTimeCut to zero
ResetVector(reftdc_GoodTimeCut,Double_t(0.0),NRefTDCElem);
} else if(reftdc_GoodTimeCut.size() == 1) { // expand vector to specify calibration for all elements
Double_t temp=reftdc_GoodTimeCut[0];
ResetVector(reftdc_GoodTimeCut,temp,NRefTDCElem);
} else if ( (int)reftdc_GoodTimeCut.size() != NRefTDCElem ) {
Error( Here(here), "Inconsistent number of reftdc.GoodTimeCut specified. Expected "
"%d but got %d",NRefTDCElem,int(reftdc_GoodTimeCut.size()));
return kInitError;
}
//
if(reftdc_cal.empty()) { // set all cal to 0.1
ResetVector(reftdc_cal,Double_t(0.1),NRefTDCElem);
} else if(reftdc_cal.size() == 1) { // expand vector to specify calibration for all elements
Double_t temp=reftdc_cal[0];
ResetVector(reftdc_cal,temp,NRefTDCElem);
} else if ( (int)reftdc_cal.size() != NRefTDCElem ) {
Error( Here(here), "Inconsistent number of reftdc.cal specified. Expected "
"%d but got %d",NRefTDCElem,int(reftdc_cal.size()));
return kInitError;
}
}
//
if (!fDisableRefADC) {
if(refadc_ped.empty()) { // set all ped to zero
ResetVector(refadc_ped,Double_t(0.0),NRefADCElem);
} else if(refadc_ped.size() == 1) { // expand vector to specify calibration for all elements
Double_t temp=refadc_ped[0];
ResetVector(refadc_ped,temp,NRefADCElem);
} else if ( (int)refadc_ped.size() != NRefADCElem ) {
Error( Here(here), "Inconsistent number of adc.ped specified. Expected "
"%d but got %d",NRefADCElem,int(refadc_ped.size()));
return kInitError;
}
if(refadc_gain.empty()) { // set all gain to 1
ResetVector(refadc_gain,Double_t(1.0),NRefADCElem);
} else if(refadc_gain.size() == 1) { // expand vector to specify calibration for all elements
Double_t temp=refadc_gain[0];
ResetVector(refadc_gain,temp,NRefADCElem);
} else if ( (int)refadc_gain.size() != NRefADCElem ) {
Error( Here(here), "Inconsistent number of adc.gain specified. Expected "
"%d but got %d",int(refadc_gain.size()),NRefADCElem);
return kInitError;
}
if(refadc_thres.empty()) { // expand vector to specify calibration for all elements
ResetVector(refadc_thres,Double_t(1.0),NRefADCElem);
} else if(refadc_thres.size() == 1) { // expand vector to specify calibration for all elements
Double_t temp=refadc_thres[0];
ResetVector(refadc_thres,temp,NRefADCElem);
std::cout << "set all elements thres = " << refadc_thres[0] << std::endl;
} else if ( (int)refadc_thres.size() != NRefADCElem ) {
Error( Here(here), "Inconsistent number of refadc.thres specified. Expected "
"%d but got %d",int(refadc_thres.size()),NRefADCElem);
return kInitError;
}
if(refadc_conv.empty()) { // expand vector to specify calibration for all elements
ResetVector(refadc_conv,Double_t(1.0),NRefADCElem);
} else if(refadc_conv.size() == 1) { // expand vector to specify calibration for all elements
Double_t temp=refadc_conv[0];
ResetVector(refadc_conv,temp,NRefADCElem);
std::cout << "set all elements conv = " << refadc_conv[0] << std::endl;
} else if ( (int)refadc_conv.size() != NRefADCElem ) {
Error( Here(here), "Inconsistent number of refadc.conv specified. Expected "
"%d but got %d",int(refadc_conv.size()),NRefADCElem);
return kInitError;
}
if(refadc_AmpToIntRatio.empty()) { // expand vector to specify calibration for all elements
ResetVector(refadc_AmpToIntRatio,Double_t(1.0),NRefADCElem);
} else if(refadc_AmpToIntRatio.size() == 1) { // expand vector to specify calibration for all elements
Double_t temp=refadc_AmpToIntRatio[0];
ResetVector(refadc_AmpToIntRatio,temp,NRefADCElem);
std::cout << "set all elements AmpToIntRatio = " << refadc_AmpToIntRatio[0] << std::endl;
} else if ( (int)refadc_AmpToIntRatio.size() != NRefADCElem ) {
Error( Here(here), "Inconsistent number of refadc.AmpToIntRatio specified. Expected "
"%d but got %d",int(refadc_AmpToIntRatio.size()),NRefADCElem);
return kInitError;
}
if(refadc_NSB.empty()) { // expand vector to specify calibration for all elements
ResetVector(refadc_NSB,3,NRefADCElem);
} else if(refadc_NSB.size() == 1) { // expand vector to specify calibration for all elements
Int_t temp=refadc_NSB[0];
ResetVector(refadc_NSB,temp,NRefADCElem);
std::cout << "set all elements NSB = " << refadc_NSB[0] << std::endl;
} else if ( (int)refadc_NSB.size() != NRefADCElem ) {
Error( Here(here), "Inconsistent number of refadc.NSB specified. Expected "
"%d but got %d",int(refadc_NSB.size()),NRefADCElem);
return kInitError;
}
if(refadc_NSA.empty()) { // expand vector to specify calibration for all elements
ResetVector(refadc_NSA,10,NRefADCElem);
} else if(refadc_NSA.size() == 1) { // expand vector to specify calibration for all elements
Int_t temp=refadc_NSA[0];
ResetVector(refadc_NSA,temp,NRefADCElem);
std::cout << "set all elements NSA = " << refadc_NSA[0] << std::endl;
} else if ( (int)refadc_NSA.size() != NRefADCElem ) {
Error( Here(here), "Inconsistent number of refadc.NSA specified. Expected "
"%d but got %d",int(refadc_NSA.size()),NRefADCElem);
return kInitError;
}
if(refadc_NPedBin.empty()) { // expand vector to specify calibration for all elements
ResetVector(refadc_NPedBin,4,NRefADCElem);
} else if(refadc_NPedBin.size() == 1) { // expand vector to specify calibration for all elements
Int_t temp=refadc_NPedBin[0];
ResetVector(refadc_NPedBin,temp,NRefADCElem);
std::cout << "set all elements NPedBin = " << refadc_NPedBin[0] << std::endl;
} else if ( (int)refadc_NPedBin.size() != NRefADCElem ) {
Error( Here(here), "Inconsistent number of adc.NPedBin specified. Expected "
"%d but got %d",int(refadc_NPedBin.size()),NRefADCElem);
return kInitError;
}
if(refadc_FixThresBin.empty()) { // expand vector to specify calibration for all elements
ResetVector(refadc_FixThresBin,10,NRefADCElem);
} else if(refadc_FixThresBin.size() == 1) { // expand vector to specify calibration for all elements
Int_t temp=refadc_FixThresBin[0];
ResetVector(refadc_FixThresBin,temp,NRefADCElem);
std::cout << "set all elements FixThresBin = " << refadc_FixThresBin[0] << std::endl;
} else if ( (int)refadc_FixThresBin.size() != NRefADCElem ) {
Error( Here(here), "Inconsistent number of adc.FixThresBin specified. Expected "
"%d but got %d",int(refadc_FixThresBin.size()),NRefADCElem);
return kInitError;
}
}
if(refadc_GoodTimeCut.empty()) { //
ResetVector(refadc_GoodTimeCut,Double_t(0.0),fNelem);
} else if(refadc_GoodTimeCut.size() == 1) { // expand vector to specify calibration for all elements
Double_t temp=refadc_GoodTimeCut[0];
ResetVector(refadc_GoodTimeCut,temp,fNelem);
} else if ( (int)refadc_GoodTimeCut.size() != fNelem ) {
Error( Here(here), "Inconsistent number of refadc.GoodTime specified. Expected "
"%d but got %d",fNelem,int(refadc_GoodTimeCut.size()));
return kInitError;
}
//
fNRefElem = NRefADCElem + NRefTDCElem;
// Set the reference time elements
if (!RefMode.empty()) {
DeleteContainer(fRefElements);
fRefElements.resize(fNRefElem);
for (Int_t nr=0;nr<fNRefElem;nr++) {
SBSElement *el = MakeElement(0,0,0,nr,0,0,nr);
if (RefMode[nr] ==0) {
el->SetTDC(reftdc_offset[nr],reftdc_cal[nr],reftdc_GoodTimeCut[nr]);
} else {
if( fModeADC == SBSModeADC::kWaveform ) {
el->SetWaveform(refadc_ped[nr],refadc_gain[nr],refadc_conv[nr],refadc_GoodTimeCut[nr]);
SBSData::Waveform *wave = el->Waveform();
wave->SetWaveformParam(refadc_thres[nr],refadc_FixThresBin[nr],refadc_NSB[nr],refadc_NSA[nr],refadc_NPedBin[nr]);
wave->SetAmpCal(refadc_AmpToIntRatio[nr]*refadc_gain[nr]);
wave->SetTrigCal(1.);
} else {
el->SetADC(refadc_ped[nr],refadc_gain[nr]);
if( fModeADC == SBSModeADC::kADC ) {
SBSData::ADC *fadc=el->ADC();
fadc->SetADCParam(refadc_conv[nr],refadc_NSB[nr],refadc_NSA[nr],refadc_NPedBin[nr],refadc_GoodTimeCut[nr]);
fadc->SetAmpCal(refadc_AmpToIntRatio[nr]*refadc_gain[nr]);
fadc->SetTrigCal(1.);
}
}
}
if( nr == fElemID_RFtime && fRFtimeIsRef && fDecodeRFtime ){
el->SetRF( true );
}
if( nr == fElemID_TrigTime && fTrigTimeIsRef && fDecodeTrigTime ){
el->SetTrig( true );
}
fRefElements[nr] = el;
}
}
//
if(tdc_offset.empty()) { // set all ped to zero
ResetVector(tdc_offset,Double_t(0.0),fNelem);
} else if(tdc_offset.size() == 1) { // expand vector to specify calibration for all elements
Double_t temp=tdc_offset[0];
ResetVector(tdc_offset,temp,fNelem);
} else if ( (int)tdc_offset.size() != fNelem ) {
Error( Here(here), "Inconsistent number of adc.ped specified. Expected "
"%d but got %d",fNelem,int(tdc_offset.size()));
return kInitError;
}
if(tdc_GoodTimeCut.empty()) { //
ResetVector(tdc_GoodTimeCut,Double_t(0.0),fNelem);
} else if(tdc_GoodTimeCut.size() == 1) { // expand vector to specify calibration for all elements
Double_t temp=tdc_GoodTimeCut[0];
ResetVector(tdc_GoodTimeCut,temp,fNelem);
} else if ( (int)tdc_GoodTimeCut.size() != fNelem ) {
Error( Here(here), "Inconsistent number of adc.ped specified. Expected "
"%d but got %d",fNelem,int(tdc_GoodTimeCut.size()));
return kInitError;
}
if(tdc_cal.empty()) { //
ResetVector(tdc_cal,Double_t(0.1),fNelem);
} else if(tdc_cal.size() == 1) { // expand vector to specify calibration for all elements
Double_t temp=tdc_cal[0];
ResetVector(tdc_cal,temp,fNelem);
} else if ( (int)tdc_cal.size() != fNelem ) {
Error( Here(here), "Inconsistent number of adc.ped specified. Expected "
"%d but got %d",fNelem,int(tdc_cal.size()));
return kInitError;
}
if(adc_ped.empty()) { // set all ped to zero
ResetVector(adc_ped,Double_t(0.0),fNelem);
} else if(adc_ped.size() == 1) { // expand vector to specify calibration for all elements
Double_t temp=adc_ped[0];
ResetVector(adc_ped,temp,fNelem);
} else if ( (int)adc_ped.size() != fNelem ) {
Error( Here(here), "Inconsistent number of adc.ped specified. Expected "
"%d but got %d",fNelem,int(adc_ped.size()));
return kInitError;
}
if(adc_gain.empty()) { // set all gain to 1
ResetVector(adc_gain,Double_t(1.0),fNelem);
} else if(adc_gain.size() == 1) { // expand vector to specify calibration for all elements
Double_t temp=adc_gain[0];
ResetVector(adc_gain,temp,fNelem);
} else if ( (int)adc_gain.size() != fNelem ) {
Error( Here(here), "Inconsistent number of adc.gain specified. Expected "
"%d but got %d",int(adc_gain.size()),fNelem);
return kInitError;
}
if(adc_timeoffset.empty()) { // set all timeoffset to 0
ResetVector(adc_timeoffset,Double_t(0.0),fNelem);
} else if(adc_timeoffset.size() == 1) { // expand vector to specify calibration for all elements
Double_t temp=adc_timeoffset[0];
ResetVector(adc_timeoffset,temp,fNelem);
} else if ( (int)adc_gain.size() != fNelem ) {
Error( Here(here), "Inconsistent number of adc.gain specified. Expected "
"%d but got %d",int(adc_gain.size()),fNelem);
return kInitError;
}
if(adc_thres.empty()) { // expand vector to specify calibration for all elements
ResetVector(adc_thres,Double_t(1.0),fNelem);
} else if(adc_thres.size() == 1) { // expand vector to specify calibration for all elements
Double_t temp=adc_thres[0];
ResetVector(adc_thres,temp,fNelem);
std::cout << "set all elements thres = " << adc_thres[0] << std::endl;
} else if ( (int)adc_thres.size() != fNelem ) {
Error( Here(here), "Inconsistent number of adc.thres specified. Expected "
"%d but got %d",int(adc_thres.size()),fNelem);
return kInitError;
}
if(adc_conv.empty()) { // expand vector to specify calibration for all elements
ResetVector(adc_conv,Double_t(1.0),fNelem);
} else if(adc_conv.size() == 1) { // expand vector to specify calibration for all elements
Double_t temp=adc_conv[0];
ResetVector(adc_conv,temp,fNelem);
std::cout << "set all elements conv = " << adc_conv[0] << std::endl;
} else if ( (int)adc_conv.size() != fNelem ) {
Error( Here(here), "Inconsistent number of adc.conv specified. Expected "
"%d but got %d",int(adc_conv.size()),fNelem);
return kInitError;
}
if(adc_AmpToIntRatio.empty()) { // expand vector to specify calibration for all elements
ResetVector(adc_AmpToIntRatio,Double_t(1.0),fNelem);
} else if(adc_AmpToIntRatio.size() == 1) { // expand vector to specify calibration for all elements
Double_t temp=adc_AmpToIntRatio[0];
ResetVector(adc_AmpToIntRatio,temp,fNelem);
std::cout << "set all elements AmpToIntRatio = " << adc_AmpToIntRatio[0] << std::endl;
} else if ( (int)adc_AmpToIntRatio.size() != fNelem ) {
Error( Here(here), "Inconsistent number of adc.AmpToIntRatio specified. Expected "
"%d but got %d",int(adc_AmpToIntRatio.size()),fNelem);
return kInitError;
}
if(adc_NSB.empty()) { // expand vector to specify calibration for all elements
ResetVector(adc_NSB,3,fNelem);
} else if(adc_NSB.size() == 1) { // expand vector to specify calibration for all elements
Int_t temp=adc_NSB[0];
ResetVector(adc_NSB,temp,fNelem);
std::cout << "set all elements NSB = " << adc_NSB[0] << std::endl;
} else if ( (int)adc_NSB.size() != fNelem ) {
Error( Here(here), "Inconsistent number of adc.NSB specified. Expected "
"%d but got %d",int(adc_NSB.size()),fNelem);
return kInitError;
}
if(adc_NSA.empty()) { // expand vector to specify calibration for all elements
ResetVector(adc_NSA,10,fNelem);
} else if(adc_NSA.size() == 1) { // expand vector to specify calibration for all elements
Int_t temp=adc_NSA[0];
ResetVector(adc_NSA,temp,fNelem);
std::cout << "set all elements NSA = " << adc_NSA[0] << std::endl;
} else if ( (int)adc_NSA.size() != fNelem ) {
Error( Here(here), "Inconsistent number of adc.NSA specified. Expected "
"%d but got %d",int(adc_NSA.size()),fNelem);
return kInitError;
}
if(adc_NPedBin.empty()) { // expand vector to specify calibration for all elements
ResetVector(adc_NPedBin,4,fNelem);
} else if(adc_NPedBin.size() == 1) { // expand vector to specify calibration for all elements
Int_t temp=adc_NPedBin[0];
ResetVector(adc_NPedBin,temp,fNelem);
std::cout << "set all elements NPedBin = " << adc_NPedBin[0] << std::endl;
} else if ( (int)adc_NPedBin.size() != fNelem ) {
Error( Here(here), "Inconsistent number of adc.NPedBin specified. Expected "
"%d but got %d",int(adc_NPedBin.size()),fNelem);
return kInitError;
}
if(adc_FixThresBin.empty()) { // expand vector to specify calibration for all elements
ResetVector(adc_FixThresBin,10,fNelem);
} else if(adc_FixThresBin.size() == 1) { // expand vector to specify calibration for all elements
Int_t temp=adc_FixThresBin[0];
ResetVector(adc_FixThresBin,temp,fNelem);
std::cout << "set all elements FixThresBin = " << adc_FixThresBin[0] << std::endl;
} else if ( (int)adc_FixThresBin.size() != fNelem ) {
Error( Here(here), "Inconsistent number of adc.FixThresBin specified. Expected "
"%d but got %d",int(adc_FixThresBin.size()),fNelem);
return kInitError;
}
if(adc_GoodTimeCut.empty()) { //
ResetVector(adc_GoodTimeCut,Double_t(0.0),fNelem);
} else if(adc_GoodTimeCut.size() == 1) { // expand vector to specify calibration for all elements
Double_t temp=adc_GoodTimeCut[0];
ResetVector(adc_GoodTimeCut,temp,fNelem);
} else if ( (int)adc_GoodTimeCut.size() != fNelem ) {
Error( Here(here), "Inconsistent number of adc.ped specified. Expected "
"%d but got %d",fNelem,int(adc_GoodTimeCut.size()));
return kInitError;
}
// Before finishing, prepare vectors that will hold variable output data
if( !fIsInit ) {
DeleteContainer(fElements);
fElements.resize(fNelem);
Double_t x = 0;
Double_t y = 0;
Double_t z = 0;
Int_t k = 0;
// the next three variables are the row,col,layer number starting
// at fChanMapStart
int rr = 0;
int cc = 0;
int ll = 0;
fElementGrid.resize(fNrows);
for(int r = 0; r < fNrows; r++) {
rr = r;
fElementGrid[r].resize(fNcols[r]);
for(int c = 0; c < fNcols[r]; c++) {
cc = c;
for(int l = 0; l < fNlayers; l++, k++) {
fElementGrid[r][c].resize(fNlayers);
ll = l;
//k = blkidx(r,c,l);
x = xyz[0] - r*dxyz[0];
y = xyz[1] - c*dxyz[1];
z = xyz[2] - l*dxyz[2];
SBSElement *e = MakeElement(x,y,z,rr,cc,ll,k+fChanMapStart);
if( WithADC() ) {
if( fModeADC == SBSModeADC::kWaveform ) {
e->SetWaveform(adc_ped[k],adc_gain[k],adc_conv[k],adc_GoodTimeCut[k]);
SBSData::Waveform *wave = e->Waveform();
wave->SetWaveformParam(adc_thres[k],adc_FixThresBin[k],adc_NSB[k],adc_NSA[k],adc_NPedBin[k]);
wave->SetAmpCal(adc_AmpToIntRatio[k]*adc_gain[k]);
wave->SetTrigCal(1.);
wave->SetTimeOffset(adc_timeoffset[k]);
} else {
e->SetADC(adc_ped[k],adc_gain[k]);
if( fModeADC == SBSModeADC::kADC ) {
SBSData::ADC *fadc=e->ADC();
fadc->SetADCParam(adc_conv[k],adc_NSB[k],adc_NSA[k],adc_NPedBin[k],adc_GoodTimeCut[k]);
fadc->SetAmpCal(adc_AmpToIntRatio[k]*adc_gain[k]);
fadc->SetTrigCal(1.);
fadc->SetTimeOffset(adc_timeoffset[k]);
}
}
}
if( WithTDC() ) { // TDC info
e->SetTDC(tdc_offset[k],tdc_cal[k],tdc_GoodTimeCut[k]);
}
if( k+fChanMapStart == fElemID_RFtime && !fRFtimeIsRef && fDecodeRFtime ){
e->SetRF( true );
}
if( k+fChanMapStart == fElemID_TrigTime && !fTrigTimeIsRef && fDecodeTrigTime ){
e->SetTrig( true );
}
fElements[k] = e;
fElementGrid[r][c][l] = e;
}
}
}
}
// All is well that ends well
fIsInit = true;
return kOK;
}
//_____________________________________________________________________________
Int_t SBSGenericDetector::DefineVariables( EMode mode )
{
// Initialize global variables
if( mode == kDefine && fIsSetup ) return kOK;
if( !( WithADC() || WithTDC() ) ) {
Error( Here("DefineVariables"),
"GenericDetector %s defined with no data payload.",GetName());
return kInitError;
}
fIsSetup = ( mode == kDefine );
// Most of these variables were used previously, and so I'll leave
// them here to preserve old analysis macros people may have written.
// This includes things like fE, fNblk, fE_c, etc...
RVarDef vars[] = {
{ "nhits", "Nhits", "fNhits" },
{ "nrefhits", "Number of reference time hits", "fNRefhits" },
{ "ngoodTDChits", "NGoodTDChits", "fNGoodTDChits" },
{ "ngoodADChits", "NGoodADChits", "fNGoodADChits" },
{ 0 }
};
Int_t err = DefineVarsFromList( vars, mode );
if( err != kOK)
return err;
std::vector<RVarDef> ve;
// TDC Reference Time variables
if(WithTDC() && !fDisableRefTDC) {
ve.push_back({ "Ref.tdcelemID", "Ref Time Calibrated TDC value", "fRefGood.TDCelemID" });
ve.push_back({ "Ref.tdc", "Ref Time Calibrated TDC value", "fRefGood.t" });
ve.push_back({ "Ref.tdc_mult", "Ref Time # hits in channel", "fRefGood.t_mult" });
if(fModeTDC != SBSModeTDC::kTDCSimple) {
// We have trailing edge and Time-Over-Threshold info to store
ve.push_back({"Ref.tdc_te","Ref Time Calibrated TDC trailing info","fRefGood.t_te"});
ve.push_back({"Ref.tdc_tot","Ref Time Time Over Threshold","fRefGood.t_ToT"});
}
if(fStoreRawHits) {
ve.push_back({ "Ref.hits.TDCelemID", "Ref Time ALL index", "fRefRaw.TDCelemID" });
ve.push_back({ "Ref.hits.t", "Ref Time All TDC leading edge times", "fRefRaw.t" });
if(fModeTDC != SBSModeTDC::kTDCSimple) {
ve.push_back({ "Ref.hits.t_te", "Ref Time All TDC trailing edge times", "fRefRaw.t_te" });
ve.push_back({ "Ref.hits.t_tot", "Ref Time All TDC Time-over-threshold", "fRefRaw.t_ToT" });
}
}
}
//
//
if(WithADC() && !fDisableRefADC) {