-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathSBSScalerEvtHandler.cxx
1115 lines (1014 loc) · 38.3 KB
/
SBSScalerEvtHandler.cxx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/** \class SBSScalerEvtHandler
\ingroup Base
\brief Event handler for Hall C scalers
This class does the following
For a particular set of event types (here, event type 0)
decode the scalers and put some variables into global variables.
The global variables can then appear in the Podd output tree T.
In addition, a tree "TS" is created by this class; it contains
just the scaler data by itself. Note, the "fName" is concatenated
with "TS" to ensure the tree is unqiue; further, "fName" is
concatenated with the name of the global variables, for uniqueness.
The list of global variables and how they are tied to the
scaler module and channels is defined here; eventually this
will be modified to use a scaler.map file
NOTE: if you don't have the scaler map file (e.g. Leftscalevt.map)
there will be no variable output to the Trees.
To use in the analyzer, your setup script needs something like this
~~~
hndlr = new SBSScalerEvtHandler("sbs","SBS Scaler bank"));
hndlr->AddEvType(1); // Repeat for each event type with scaler banks
hndlr->SetUseFirstEvent(kTRUE);
gHaEvtHandlers->Add (hndlr);
~~~
To enable debugging, add the line
~~~
hndlr->SetDebugFile("Scalerdebug.txt");
~~~
\author E. Brash based on THaScalerEvtHandler by R. Michaels
S. Wood modified for SBS
*/
#include "THaEvtTypeHandler.h"
#include "SBSScalerEvtHandler.h"
#include "GenScaler.h"
#include "Scaler3800.h"
#include "Scaler3801.h"
#include "Scaler1151.h"
#include "Scaler560.h"
//#include "Scaler9001.h"
//#include "Scaler9250.h"
#include "THaAnalyzer.h"
#include "THaCodaData.h"
#include "THaEvData.h"
//#include "THcParmList.h"
//#include "THcGlobals.h"
#include "THaGlobals.h"
#include "TNamed.h"
#include "TMath.h"
#include "TString.h"
#include "TROOT.h"
#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <sstream>
#include <map>
#include <iterator>
#include "THaVarList.h"
#include "VarDef.h"
#include "Helper.h"
#include "TH1D.h"
using namespace std;
using namespace Decoder;
static const UInt_t ICOUNT = 1;
static const UInt_t IRATE = 2;
static const UInt_t ICURRENT = 3;
static const UInt_t ICHARGE = 4;
static const UInt_t ITIME = 5;
static const UInt_t ICUT = 6;
static const UInt_t MAXCHAN = 32;
static const UInt_t defaultDT = 4;
SBSScalerEvtHandler::SBSScalerEvtHandler(const char *name, const char* description)
: THaEvtTypeHandler(name,description),
fBCM_Gain(0), fBCM_Offset(0), fBCM_SatOffset(0), fBCM_SatQuadratic(0), fBCM_delta_charge(0),
evcount(0), evcountR(0.0), ifound(0), fNormIdx(-1),
fNormSlot(-1),
dvars(0),dvars_prev_read(0), dvarsFirst(0), fScalerTree(0), fUseFirstEvent(kTRUE),
fOnlySyncEvents(kFALSE), fOnlyBanks(kFALSE), fDelayedType(-1),
fClockChan(-1), fLastClock(0), fClockOverflows(0),fPhysicsEventNumber(-1)
{
fRocSet.clear();
fModuleSet.clear();
scal_prev_read.clear();
scal_present_read.clear();
scal_overflows.clear();
fHistosInitialized = false;
}
SBSScalerEvtHandler::~SBSScalerEvtHandler()
{
// The tree object is owned by ROOT since it gets associated wth the output
// file, so DO NOT delete it here.
if (!TROOT::Initialized()) {
delete fScalerTree;
}
DeleteContainer(scalers);
DeleteContainer(scalerloc);
delete [] dvars_prev_read;
delete [] dvars;
delete [] dvarsFirst;
delete [] fBCM_Gain;
delete [] fBCM_Offset;
delete [] fBCM_SatOffset;
delete [] fBCM_SatQuadratic;
delete [] fBCM_delta_charge;
for( vector<UInt_t*>::iterator it = fDelayedEvents.begin();
it != fDelayedEvents.end(); ++it )
delete [] *it;
fDelayedEvents.clear();
}
Int_t SBSScalerEvtHandler::Begin( THaRunBase* rb )
{
THaEvtTypeHandler::Begin( rb );
if( !fHistosInitialized ){
fHistosInitialized = true;
fIunserVsTime = new TH1D("fIunserVsTime", ";time (s);", 5000, 0, 5000);
fIu1VsTime = new TH1D("fIu1VsTime", ";time (s);", 5000, 0, 5000);
fIunewVsTime = new TH1D("fIunewVsTime", ";time (s);", 5000, 0, 5000);
fIdnewVsTime = new TH1D("fIdnewVsTime", ";time (s);", 5000, 0, 5000);
fId1VsTime = new TH1D("fId1VsTime", ";time (s);", 5000, 0, 5000);
fId3VsTime = new TH1D("fId3VsTime", ";time (s);", 5000, 0, 5000);
fId10VsTime = new TH1D("fId10VsTime", ";time (s);", 5000, 0, 5000);
}
return 0;
}
Int_t SBSScalerEvtHandler::End( THaRunBase* )
{
// Process any delayed events in order received
cout << "SBSScalerEvtHandler::End Analyzing " << fDelayedEvents.size() << " delayed scaler events" << endl;
for(std::vector<UInt_t*>::iterator it = fDelayedEvents.begin();
it != fDelayedEvents.end(); ++it) {
UInt_t* rdata = *it;
AnalyzeBuffer(rdata,kFALSE);
}
if (fDebugFile) *fDebugFile << "scaler tree ptr "<<fScalerTree<<endl;
// evNumber += 1;
evNumberR = evNumber;
if (fScalerTree) fScalerTree->Fill();
for( vector<UInt_t*>::iterator it = fDelayedEvents.begin();
it != fDelayedEvents.end(); ++it )
delete [] *it;
fDelayedEvents.clear();
if (fScalerTree) fScalerTree->Write();
double Ntrigs, NtrigsA, Time, BeamCurrent, BeamCharge, LiveTime;
double clk_cnt = 0, clk_rate = 0, edtm_cnt = 0, unew_cnt = 0, d3_cnt = 0, d10_cnt = 0;
if(fIunserVsTime!=NULL) fIunserVsTime->Write( 0, kOverwrite );
if(fIu1VsTime!=NULL) fIu1VsTime->Write( 0, kOverwrite );
if(fIunewVsTime!=NULL) fIunewVsTime->Write( 0, kOverwrite );
if(fIdnewVsTime!=NULL) fIdnewVsTime->Write( 0, kOverwrite );
if(fId1VsTime!=NULL) fId1VsTime->Write( 0, kOverwrite );
if(fId3VsTime!=NULL) fId3VsTime->Write( 0, kOverwrite );
if(fId10VsTime!=NULL) fId10VsTime->Write( 0, kOverwrite );
THaAnalyzer* analyzer = THaAnalyzer::GetInstance();
if(analyzer!=nullptr){// check that the analyzer actually exists... otherwise, skip
const char* summaryfilename = analyzer->GetSummaryFileName();
cout << "SBSScalerEvtHandler Summary in " << summaryfilename << endl;
if( strcmp(summaryfilename,"")!=0 ) {
ofstream ostr(summaryfilename, std::ofstream::app);
if( ostr ) {
// Write to file via cout
//streambuf* cout_buf = cout.rdbuf();
//cout.rdbuf(ostr.rdbuf());
TDatime now;
ostr << "SBS scalers Summary " //<< fRun->GetNumber()
<< " completed " << now.AsString()
<< endl << " count " << evcount << endl
<< endl;
for (UInt_t i = 0; i < scalerloc.size(); i++) {
TString name = scalerloc[i]->name;
//tinfo = name + "/D";
//fScalerTree->Branch(name.Data(), &dvars[i], tinfo.Data(), 4000);
bool found = false;
if(name.Contains("L1A")){
found = true;
if(name.Contains("scaler") && !name.Contains("Rate"))NtrigsA = dvars[i];
}
if(name.Contains("BBCALTRG")){
found = true;
if(name.Contains("scaler") && !name.Contains("Rate"))Ntrigs = dvars[i];
}
if(name.Contains("EDTM")){
found = true;
if(name.Contains("scaler") && !name.Contains("Rate"))edtm_cnt = dvars[i];
}
if(name.Contains("104kHz_CLK")){
found = true;
cout << name.Data() << endl;
if(name.Contains("rate")){
cout << "104kHz clock rate? " << dvars[i] << endl;
clk_rate = dvars[i];
}else if(name.Contains("cnt")){
clk_cnt = dvars[i];
}
}
if(name.Contains("bcm")){
found = true;
if(name.Contains("unew.cnt") && !name.Contains("rate"))unew_cnt = dvars[i];
if(name.Contains("d3.cnt") && !name.Contains("rate"))d3_cnt = dvars[i];
if(name.Contains("d10.cnt") && !name.Contains("rate"))d10_cnt = dvars[i];
}
if(found)ostr << " Scaler " << name.Data() << " value: " << dvars[i] << endl;
}
//std::vector<Decoder::GenScaler*> scalers;
//std::vector<ScalerVar*> scalerloc;
ostr << endl;
double unew_charge = unew_cnt/2.8725e3;//uC/counts //TODO put those numbers in DB
double d3_charge = d3_cnt/1.7e3;//uC/counts //TODO put those numbers in DB
double d10_charge = d10_cnt/7.52e3;//uC/counts //TODO put those numbers in DB
// those numbers have been obtained using run 11991 by plotting the
// corresponding scaler rates for this run and dividing by
// the beam current for this run i.e. 4uA
Time = clk_cnt/clk_rate;
BeamCharge = (unew_charge+d3_charge+d10_charge)/3;
BeamCurrent = BeamCharge/Time;
LiveTime = (edtm_cnt/Time)/21.;//TODO, put EDTM frequency in a DB
//setting 21.0 Hz instead of 20.0 is sort of an educated guess
ostr << " scaler summary : N_trigs = " << Ntrigs << endl;
ostr << " scaler summary : N_trigs_accepted = " << NtrigsA << endl;
ostr << " scaler summary : Time = " << Time << " s " << endl;
ostr << " scaler summary : beam charge (unew) = " << unew_charge << " uC " << endl;
ostr << " scaler summary : beam charge (d3) = " << d3_charge << " uC " << endl;
ostr << " scaler summary : beam charge (d10) = " << d10_charge << " uC " << endl;
ostr << " scaler summary : Average beam charge = " << BeamCharge << " uC " << endl;
ostr << " scaler summary : Average beam current = " << BeamCurrent << " uA " << endl;
ostr << " scaler summary : Live time (NtrigA/Ntrig) = " << NtrigsA/Ntrigs*100 << " % " << endl;
ostr << " scaler summary : Live time (EDTM) = " << LiveTime*100 << " % " << endl;
//cout.rdbuf(cout_buf);
ostr.close();
}
}
}
return 0;
}
Int_t SBSScalerEvtHandler::ReadDatabase(const TDatime& date )
{
char prefix[2];
prefix[0]='g';
prefix[1]='\0';
fNumBCMs = 0;
// #ifdef HALLCPARM
DBRequest list [] = {
{"NumBCMs",&fNumBCMs,kInt,0,1},
{0}
};
TString sname = "db_sbsBCM.dat";
std::cout << "Trying to load database file " << sname << std::endl;
// FILE* file = OpenFile( date );
FILE *file = Podd::OpenDBFile(sname.Data(), date);
if( !file ){
std::cout << "*** ERROR! Cannot load DB file! ***" << std::endl;
return kInitError;
}
Int_t err = kOK;
if(!err){
err = LoadDB( file, date,list,fPrefix);
if(err!=0) std::cout << "*** ERROR! Cannot load DB! ***" << std::endl;
}
// DBRequest list[]={
// {"NumBCMs",&fNumBCMs, kInt, 0, 1},
// {0}
// };
// gHcParms->LoadParmValues((DBRequest*)&list, prefix);
cout << " Number of BCMs = " << fNumBCMs << endl;
if(fNumBCMs > 0) {
fBCM_Gain = new Double_t[fNumBCMs];
fBCM_Offset = new Double_t[fNumBCMs];
fBCM_SatOffset = new Double_t[fNumBCMs];
fBCM_SatQuadratic = new Double_t[fNumBCMs];
fBCM_delta_charge= new Double_t[fNumBCMs];
string bcm_namelist;
DBRequest list2[]={
{"BCM_Names" , &bcm_namelist, kString},
{"BCM_Gain" , fBCM_Gain, kDouble, (UInt_t) fNumBCMs},
{"BCM_Offset" , fBCM_Offset, kDouble, (UInt_t) fNumBCMs},
{"BCM_SatQuadratic" , fBCM_SatQuadratic, kDouble, (UInt_t) fNumBCMs,1},
{"BCM_SatOffset" , fBCM_SatOffset, kDouble, (UInt_t) fNumBCMs,1},
{"BCM_Current_threshold" , &fbcm_Current_Threshold, kDouble, 0 , 1},
{"BCM_Current_threshold_index", &fbcm_Current_Threshold_Index, kInt , 0 , 1},
{0}
};
fbcm_Current_Threshold = 0.0;
fbcm_Current_Threshold_Index = 0;
for(Int_t i=0;i<fNumBCMs;i++) {
fBCM_SatOffset[i]=0.;
fBCM_SatQuadratic[i]=0.;
}
err = LoadDB(file,date,list2,fPrefix);
// gHcParms->LoadParmValues((DBRequest*)&list2, prefix);
string myStr;
vector<string> bcm_names = Podd::vsplit(bcm_namelist);
for(Int_t i=0;i<fNumBCMs;i++) {
myStr = "sbs.bcm." + bcm_names[i] + ".current";
fBCM_Name.push_back(myStr);
fBCM_delta_charge[i]=0.;
}
// print what we have
std::cout << "LOADED FROM DATABASE: " << std::endl;
for(Int_t i=0;i<fNumBCMs;i++){
std::cout << Form("%s: offset = %.3lf Hz, gain = %.3lf Hz/uA",fBCM_Name[i].c_str(),fBCM_Offset[i],fBCM_Gain[i]) << std::endl;
}
}
// #endif
fTotalTime=0.;
fPrevTotalTime=0.;
fDeltaTime=-1.;
//
//
return kOK;
}
void SBSScalerEvtHandler::SetDelayedType(int evtype) {
/**
* \brief Delay analysis of this event type to end.
*
* Final scaler events generated in readout list end routines may not
* come in order in the data stream. If the event type of a end routine
* scaler event is set, then the event contents will be saved and analyzed
* at the end of the analysis so that time ordering of scaler events is preserved.
*/
fDelayedType = evtype;
}
Int_t SBSScalerEvtHandler::Analyze(THaEvData *evdata)
{
Int_t lfirst=1;
if(evdata->GetEvNum() > 0) {
evNumber = evdata->GetEvNum();
evNumberR = evNumber;
}
if ( !IsMyEvent(evdata->GetEvType()) ) return -1;
if (fDebugFile) {
*fDebugFile << endl << "---------------------------------- "<<endl<<endl;
*fDebugFile << "\nEnter SBSScalerEvtHandler for fName = "<<fName<<endl;
EvDump(evdata);
}
if (lfirst && !fScalerTree) {
lfirst = 0; // Can't do this in Init for some reason
TString sname1 = "TS";
TString sname2 = sname1 + fName;
TString sname3 = fName + " Scaler Data";
if (fDebugFile) {
*fDebugFile << "\nAnalyze 1st time for fName = "<<fName<<endl;
*fDebugFile << sname2 << " " <<sname3<<endl;
}
fScalerTree = new TTree(sname2.Data(),sname3.Data());
fScalerTree->SetAutoSave(200000000);
TString name, tinfo;
name = "evcount";
tinfo = name + "/D";
fScalerTree->Branch(name.Data(), &evcountR, tinfo.Data(), 4000);
name = "evNumber";
tinfo = name + "/D";
fScalerTree->Branch(name.Data(), &evNumberR, tinfo.Data(), 4000);
// create a branch for the physics event number
fScalerTree->Branch("evnum",&fPhysicsEventNumber,"evnum/L");
for (size_t i = 0; i < scalerloc.size(); i++) {
name = scalerloc[i]->name;
tinfo = name + "/D";
fScalerTree->Branch(name.Data(), &dvars[i], tinfo.Data(), 4000);
}
} // if (lfirst && !fScalerTree)
// get the physics event number
fPhysicsEventNumber = evdata->GetEvNum();
UInt_t *rdata = (UInt_t*) evdata->GetRawDataBuffer();
if( (Int_t)evdata->GetEvType() == fDelayedType) { // Save this event for processing later
UInt_t evlen = evdata->GetEvLength();
UInt_t *datacopy = new UInt_t[evlen];
fDelayedEvents.push_back(datacopy);
memcpy(datacopy,rdata,evlen*sizeof(UInt_t));
return 1;
} else { // A normal event
if (fDebugFile) *fDebugFile<<"\n\nSBSScalerEvtHandler :: Debugging event type "<<dec<<evdata->GetEvType()<< " event num = " << evdata->GetEvNum() << endl<<endl;
Int_t ret;
if((ret=AnalyzeBuffer(rdata,fOnlySyncEvents))) {
if (fDebugFile) *fDebugFile << "scaler tree ptr "<<fScalerTree<<endl;
if (fScalerTree) fScalerTree->Fill();
//fill histos here?
double Time = -10;
double clk_cnt = 0, clk_rate = 0, unser_rate = 0, u1_rate = 0, unew_rate = 0, dnew_rate = 0, d1_rate = 0, d3_rate = 0, d10_rate = 0;
for (UInt_t i = 0; i < scalerloc.size(); i++) {
TString name = scalerloc[i]->name;
//cout << name.Data() << endl;
if(name.Contains("4MHz_CLK")){
if(name.Contains("Rate")){
clk_rate = dvars[i];
}else if(name.Contains("scaler") && !name.Contains("Cut")){
clk_cnt = dvars[i];
}
}
if(name.Contains("bcm")){
if(name.Contains("unser.rate"))unser_rate = dvars[i];
if(name.Contains("u1.rate"))u1_rate = dvars[i];
if(name.Contains("unew.rate"))unew_rate = dvars[i];
if(name.Contains("dnew.rate"))dnew_rate = dvars[i];
if(name.Contains("d1.rate"))d1_rate = dvars[i];
if(name.Contains("d3.rate"))d3_rate = dvars[i];
if(name.Contains("d10.rate"))d10_rate = dvars[i];
}
}
Time = clk_cnt/clk_rate;
if(fIunserVsTime!=NULL && Time>0) fIunserVsTime->Fill(Time, unser_rate);
if(fIu1VsTime!=NULL && Time>0) fIu1VsTime->Fill(Time, u1_rate);
if(fIunewVsTime!=NULL && Time>0) fIunewVsTime->Fill(Time, unew_rate);
if(fIdnewVsTime!=NULL && Time>0) fIdnewVsTime->Fill(Time, dnew_rate);
if(fId1VsTime!=NULL && Time>0) fId1VsTime->Fill(Time, d1_rate);
if(fId3VsTime!=NULL && Time>0) fId3VsTime->Fill(Time, d3_rate);
if(fId10VsTime!=NULL && Time>0) fId10VsTime->Fill(Time, d10_rate);
}
return ret;
}
}
Int_t SBSScalerEvtHandler::AnalyzeBuffer(UInt_t* rdata, Bool_t onlysync)
{
// Parse the data, load local data arrays.
UInt_t *p = (UInt_t*) rdata;
UInt_t *plast = p+*p; // Index to last word in the bank
ifound=0;
while(p<plast) {
p++; // point to header
if (fDebugFile) {
*fDebugFile << "Bank: " << hex << *p << dec << " len: " << *(p-1) << endl;
}
if((*p & 0xff00) == 0x1000) { // Bank Containing banks
p++; // Now pointing to a bank in the bank
} else if (((*p & 0xff00) == 0x100) && (*p != 0xC0000100)) {
// Bank containing integers. Look for scalers
// This is either ROC bank containing integers or
// a bank within a ROC containing data from modules of a single type
// Look for scaler data
// Assume that very first word is a scaler header
// At any point in the bank where the word is not a matching
// header, we stop.
UInt_t tag = (*p>>16) & 0xffff;
UInt_t num = (*p) & 0xff;
UInt_t *pnext = p+*(p-1); // Next bank
p++; // First data word
// Skip over banks that can't contain scalers
// If SetOnlyBanks(kTRUE) called, fRocSet will be empty
// so only bank tags matching module types will be considered.
if(fModuleSet.find(tag)!=fModuleSet.end()) {
if(onlysync && num==0) {
ifound = 0;
return 0;
}
} else if (fRocSet.find(tag)==fRocSet.end()) {
p = pnext; // Fall through to end of the above else if
}
// Look for normalization scaler module first.
if(fNormIdx >= 0) {
UInt_t *psave = p;
while(p < pnext) {
if(scalers[fNormIdx]->IsSlot(*p)) {
scalers[fNormIdx]->Decode(p);
ifound = 1;
break;
}
p += scalers[fNormIdx]->GetNumChan() + 1;
}
p = psave;
}
while(p < pnext) {
Int_t nskip = 0;
if(fDebugFile) {
*fDebugFile << "Scaler Header: " << hex << *p << dec;
}
for(size_t j=0; j<scalers.size(); j++) {
if(scalers[j]->IsSlot(*p)) {
nskip = scalers[j]->GetNumChan() + 1;
if((Int_t) j != fNormIdx) {
if(fDebugFile) {
*fDebugFile << " found (" << j << ") skip " << nskip << endl;
}
scalers[j]->Decode(p);
ifound = 1;
}
break;
}
}
if(nskip == 0) {
if(fDebugFile) {
*fDebugFile << endl;
}
break; // Didn't find a matching header
}
p = p + nskip;
}
p = pnext;
} else {
p = p+*(p-1); // Skip to next bank
}
}
if (fDebugFile) {
*fDebugFile << "Finished with decoding. "<<endl;
*fDebugFile << " Found flag = "<<ifound<<endl;
}
// HMS has headers which are different from SOS, but both are
// event type 0 and come here. If you found no headers, return.
if (!ifound) return 0;
// The correspondance between dvars and the scaler and the channel
// will be driven by a scaler.map file -- later
Double_t scal_current=0;
UInt_t thisClock = scalers[fNormIdx]->GetData(fClockChan);
if(thisClock < fLastClock) { // Count clock scaler wrap arounds
fClockOverflows++;
}
fTotalTime = (thisClock+(((Double_t) fClockOverflows)*kMaxUInt+fClockOverflows))/fClockFreq;
fLastClock = thisClock;
fDeltaTime= fTotalTime - fPrevTotalTime;
if (fDeltaTime==0) {
cout << " ******************* Severe Warning ****************************" << endl;
cout << " In SBSScalerEvtHandler have found fDeltaTime is zero !! " << endl;
cout << " ******************* Alert DAQ experts ****************************" << endl;
}
fPrevTotalTime=fTotalTime;
Int_t nscal=0;
for (size_t i = 0; i < scalerloc.size(); i++) {
size_t ivar = scalerloc[i]->ivar;
size_t idx = scalerloc[i]->index;
size_t ichan = scalerloc[i]->ichan;
if (evcount==0) {
if (fDebugFile) *fDebugFile << "Debug dvarsFirst "<<i<<" "<<ivar<<" "<<idx<<" "<<ichan<<endl;
if ((ivar < scalerloc.size()) &&
(idx < scalers.size()) &&
(ichan < MAXCHAN)){
if(fUseFirstEvent){
if (scalerloc[ivar]->ikind == ICOUNT){
UInt_t scaldata = scalers[idx]->GetData(ichan);
dvars[ivar] = scaldata;
scal_present_read.push_back(scaldata);
scal_prev_read.push_back(0);
scal_overflows.push_back(0);
dvarsFirst[ivar] = 0.0;
}
if (scalerloc[ivar]->ikind == ITIME){
dvars[ivar] =fTotalTime;
dvarsFirst[ivar] = 0;
}
if (scalerloc[ivar]->ikind == IRATE) {
dvars[ivar] = (scalers[idx]->GetData(ichan))/fDeltaTime;
dvarsFirst[ivar] = dvars[ivar];
//printf("%s %f\n",scalerloc[ivar]->name.Data(),scalers[idx]->GetRate(ichan)); //checks
}
if(scalerloc[ivar]->ikind == ICURRENT || scalerloc[ivar]->ikind == ICHARGE){
Int_t bcm_ind=-1;
for(Int_t itemp =0; itemp<fNumBCMs;itemp++)
{
size_t match = string(scalerloc[ivar]->name.Data()).find(string(fBCM_Name[itemp]));
if (match!=string::npos)
{
bcm_ind=itemp;
}
}
if (scalerloc[ivar]->ikind == ICURRENT) {
dvars[ivar]=0.;
if (bcm_ind != -1) {
dvars[ivar]=((scalers[idx]->GetData(ichan))/fDeltaTime-fBCM_Offset[bcm_ind])/fBCM_Gain[bcm_ind];
dvars[ivar]=dvars[ivar]+fBCM_SatQuadratic[bcm_ind]*TMath::Power(TMath::Max(dvars[ivar]-fBCM_SatOffset[bcm_ind],0.0),2.0);
}
if (bcm_ind == fbcm_Current_Threshold_Index) scal_current= dvars[ivar];
}
if (scalerloc[ivar]->ikind == ICHARGE) {
if (bcm_ind != -1) {
Double_t cur_temp=((scalers[idx]->GetData(ichan))/fDeltaTime-fBCM_Offset[bcm_ind])/fBCM_Gain[bcm_ind];
cur_temp=cur_temp+fBCM_SatQuadratic[bcm_ind]*TMath::Power(TMath::Max(cur_temp-fBCM_SatOffset[bcm_ind],0.0),2.0);
fBCM_delta_charge[bcm_ind]=fDeltaTime*cur_temp;
dvars[ivar]+=fBCM_delta_charge[bcm_ind];
}
}
// printf("1st event %i index %i fBCMname %s scalerloc %s offset %f gain %f computed %f\n",evcount, bcm_ind, fBCM_Name[bcm_ind],scalerloc[ivar]->name.Data(),fBCM_Offset[bcm_ind],fBCM_Gain[bcm_ind],dvars[ivar]);
}
if (fDebugFile) *fDebugFile << " dvarsFirst "<<scalerloc[ivar]->ikind<<" "<<dvarsFirst[ivar]<<endl;
} else { //ifnotusefirstevent
if (scalerloc[ivar]->ikind == ICOUNT) {
dvarsFirst[ivar] = scalers[idx]->GetData(ichan) ;
scal_present_read.push_back(dvarsFirst[ivar]);
scal_prev_read.push_back(0);
}
if (scalerloc[ivar]->ikind == ITIME){
dvarsFirst[ivar] = fTotalTime;
}
if (scalerloc[ivar]->ikind == IRATE) {
dvarsFirst[ivar] = (scalers[idx]->GetData(ichan))/fDeltaTime;
//printf("%s %f\n",scalerloc[ivar]->name.Data(),scalers[idx]->GetRate(ichan)); //checks
}
if(scalerloc[ivar]->ikind == ICURRENT || scalerloc[ivar]->ikind == ICHARGE)
{
Int_t bcm_ind=-1;
for(Int_t itemp =0; itemp<fNumBCMs;itemp++)
{
size_t match = string(scalerloc[ivar]->name.Data()).find(string(fBCM_Name[itemp]));
if (match!=string::npos)
{
bcm_ind=itemp;
}
}
if (scalerloc[ivar]->ikind == ICURRENT) {
dvarsFirst[ivar]=0.0;
if (bcm_ind != -1) {
dvarsFirst[ivar]=((scalers[idx]->GetData(ichan))/fDeltaTime-fBCM_Offset[bcm_ind])/fBCM_Gain[bcm_ind];
dvarsFirst[ivar]=dvarsFirst[ivar]+fBCM_SatQuadratic[bcm_ind]*TMath::Power(TMath::Max(dvars[ivar]-fBCM_SatOffset[bcm_ind],0.0),2.);
}
if (bcm_ind == fbcm_Current_Threshold_Index) scal_current= dvarsFirst[ivar];
}
if (scalerloc[ivar]->ikind == ICHARGE) {
if (bcm_ind != -1) {
Double_t cur_temp=((scalers[idx]->GetData(ichan))/fDeltaTime-fBCM_Offset[bcm_ind])/fBCM_Gain[bcm_ind];
cur_temp=cur_temp+fBCM_SatQuadratic[bcm_ind]*TMath::Power(TMath::Max(cur_temp-fBCM_SatOffset[bcm_ind],0.0),2.);
fBCM_delta_charge[bcm_ind]=fDeltaTime*cur_temp;
dvarsFirst[ivar]+=fBCM_delta_charge[bcm_ind];
}
}
}
if (fDebugFile) *fDebugFile << " dvarsFirst "<<scalerloc[ivar]->ikind<<" "<<dvarsFirst[ivar]<<endl;
}
}
else {
cout << "SBSScalerEvtHandler:: ERROR:: incorrect index "<<ivar<<" "<<idx<<" "<<ichan<<endl;
}
}else{ // evcount != 0
if (fDebugFile) *fDebugFile << "Debug dvars "<<i<<" "<<ivar<<" "<<idx<<" "<<ichan<<endl;
if ((ivar < scalerloc.size()) &&
(idx < scalers.size()) &&
(ichan < MAXCHAN)) {
if (scalerloc[ivar]->ikind == ICOUNT) {
UInt_t scaldata = scalers[idx]->GetData(ichan);
if(scaldata < scal_prev_read[nscal]) {
scal_overflows[nscal]++;
}
dvars[ivar] = scaldata + (1+((Double_t)kMaxUInt))*scal_overflows[nscal]
-dvarsFirst[ivar];
scal_present_read[nscal]=scaldata;
nscal++;
}
if (scalerloc[ivar]->ikind == ITIME) {
dvars[ivar] = fTotalTime;
}
if (scalerloc[ivar]->ikind == IRATE) {
UInt_t scaldata = scalers[idx]->GetData(ichan);
UInt_t diff;
if(scaldata < scal_prev_read[nscal-1]) {
diff = (kMaxUInt-(scal_prev_read[nscal-1] - 1)) + scaldata;
} else {
diff = scaldata - scal_prev_read[nscal-1];
}
dvars[ivar] = diff/fDeltaTime;
// printf("%s %f\n",scalerloc[ivar]->name.Data(),scalers[idx]->GetRate(ichan));//checks
}
if(scalerloc[ivar]->ikind == ICURRENT || scalerloc[ivar]->ikind == ICHARGE)
{
Int_t bcm_ind=-1;
for(Int_t itemp =0; itemp<fNumBCMs;itemp++)
{
size_t match = string(scalerloc[ivar]->name.Data()).find(string(fBCM_Name[itemp]));
if (match!=string::npos)
{
bcm_ind=itemp;
}
}
if (scalerloc[ivar]->ikind == ICURRENT) {
dvars[ivar]=0;
if (bcm_ind != -1) {
UInt_t scaldata = scalers[idx]->GetData(ichan);
UInt_t diff;
if(scaldata < scal_prev_read[nscal-1]) {
diff = (kMaxUInt-(scal_prev_read[nscal-1] - 1)) + scaldata;
} else {
diff = scaldata - scal_prev_read[nscal-1];
}
dvars[ivar]=0.;
if (fDeltaTime>0) {
Double_t cur_temp=(diff/fDeltaTime-fBCM_Offset[bcm_ind])/fBCM_Gain[bcm_ind];
cur_temp=cur_temp+fBCM_SatQuadratic[bcm_ind]*TMath::Power(TMath::Max(cur_temp-fBCM_SatOffset[bcm_ind],0.0),2.);
dvars[ivar]=cur_temp;
}
}
if (bcm_ind == fbcm_Current_Threshold_Index) scal_current= dvars[ivar];
}
if (scalerloc[ivar]->ikind == ICHARGE) {
if (bcm_ind != -1) {
UInt_t scaldata = scalers[idx]->GetData(ichan);
UInt_t diff;
if(scaldata < scal_prev_read[nscal-1]) {
diff = (kMaxUInt-(scal_prev_read[nscal-1] - 1)) + scaldata;
} else {
diff = scaldata - scal_prev_read[nscal-1];
}
fBCM_delta_charge[bcm_ind]=0;
if (fDeltaTime>0) {
Double_t cur_temp=(diff/fDeltaTime-fBCM_Offset[bcm_ind])/fBCM_Gain[bcm_ind];
cur_temp=cur_temp+fBCM_SatQuadratic[bcm_ind]*TMath::Power(TMath::Max(cur_temp-fBCM_SatOffset[bcm_ind],0.0),2.);
fBCM_delta_charge[bcm_ind]=fDeltaTime*cur_temp;
}
dvars[ivar]+=fBCM_delta_charge[bcm_ind];
}
}
// printf("event %i index %i fBCMname %s scalerloc %s offset %f gain %f computed %f\n",evcount, bcm_ind, fBCM_Name[bcm_ind],scalerloc[ivar]->name.Data(),fBCM_Offset[bcm_ind],fBCM_Gain[bcm_ind],dvars[ivar]);
}
if (fDebugFile) *fDebugFile << " dvars "<<scalerloc[ivar]->ikind<<" "<<dvars[ivar]<<endl;
} else {
cout << "SBSScalerEvtHandler:: ERROR:: incorrect index "<<ivar<<" "<<idx<<" "<<ichan<<endl;
}
}
}
//
for (size_t i = 0; i < scalerloc.size(); i++) {
size_t ivar = scalerloc[i]->ivar;
size_t idx = scalerloc[i]->index;
size_t ichan = scalerloc[i]->ichan;
if (scalerloc[ivar]->ikind == ICUT+ICOUNT){
UInt_t scaldata = scalers[idx]->GetData(ichan);
if ( scal_current > fbcm_Current_Threshold) {
UInt_t diff;
if(scaldata < dvars_prev_read[ivar]) {
diff = (kMaxUInt-(dvars_prev_read[ivar] - 1)) + scaldata;
} else {
diff = scaldata - dvars_prev_read[ivar];
}
dvars[ivar] += diff;
}
dvars_prev_read[ivar] = scaldata;
}
if (scalerloc[ivar]->ikind == ICUT+ICHARGE){
Int_t bcm_ind=-1;
for(Int_t itemp =0; itemp<fNumBCMs;itemp++)
{
size_t match = string(scalerloc[ivar]->name.Data()).find(string(fBCM_Name[itemp]));
if (match!=string::npos)
{
bcm_ind=itemp;
}
}
if ( scal_current > fbcm_Current_Threshold && bcm_ind != -1) {
dvars[ivar] += fBCM_delta_charge[bcm_ind];
}
}
if (scalerloc[ivar]->ikind == ICUT+ITIME){
if ( scal_current > fbcm_Current_Threshold) {
dvars[ivar] += fDeltaTime;
}
}
}
//
evcount = evcount + 1;
evcountR = evcount;
//
for (size_t j=0; j<scal_prev_read.size(); j++) scal_prev_read[j]=scal_present_read[j];
//
for (auto & scaler : scalers) scaler->Clear();
return 1;
}
THaAnalysisObject::EStatus SBSScalerEvtHandler::Init(const TDatime& date)
{
//
ReadDatabase(date);
const int LEN = 200;
char cbuf[LEN];
eventtypes.push_back(1);
fStatus = kOK;
fNormIdx = -1;
for( vector<UInt_t*>::iterator it = fDelayedEvents.begin();
it != fDelayedEvents.end(); ++it )
delete [] *it;
fDelayedEvents.clear();
cout << "Initializing SBSScalerEvtHandler; name = "
<< fName << endl;
if(eventtypes.size()==0) {
eventtypes.push_back(0); // Default Event Type
}
TString dfile;
dfile = fName + "scaler.txt";
// Parse the map file which defines what scalers exist and the global variables.
TString sname0 = "Scalevt";
TString sname;
sname = fName+sname0;
FILE *fi = Podd::OpenDBFile(sname.Data(), date);
if ( !fi ) {
cout << "Cannot find db file for "<<fName<<" scaler event handler"<<endl;
return kFileError;
}
size_t minus1 = -1;
size_t pos1;
string scomment = "#";
string svariable = "variable";
string smap = "map";
vector<string> dbline;
while( fgets(cbuf, LEN, fi) != NULL) {
std::string sin(cbuf);
std::string sinput(sin.substr(0,sin.find_first_of("#")));
if (fDebugFile) *fDebugFile << "string input "<<sinput<<endl;
dbline = Podd::vsplit(sinput);
if (dbline.size() > 0) {
pos1 = FindNoCase(dbline[0],scomment);
if (pos1 != minus1) continue;
pos1 = FindNoCase(dbline[0],svariable);
if (pos1 != minus1 && dbline.size()>4) {
string sdesc = "";
for (size_t j=5; j<dbline.size(); j++) sdesc = sdesc+" "+dbline[j];
UInt_t islot = atoi(dbline[1].c_str());
UInt_t ichan = atoi(dbline[2].c_str());
UInt_t ikind = atoi(dbline[3].c_str());
if (fDebugFile)
*fDebugFile << "add var "<<dbline[1]<<" desc = "<<sdesc<<" islot= "<<islot<<" "<<ichan<<" "<<ikind<<endl;
TString tsname(dbline[4].c_str());
TString tsdesc(sdesc.c_str());
AddVars(tsname,tsdesc,islot,ichan,ikind);
// add extra scaler which is cut on the current
if (ikind == ICOUNT ||ikind == ITIME ||ikind == ICHARGE ) {
tsname=tsname+"Cut";
AddVars(tsname,tsdesc,islot,ichan,ICUT+ikind);
}
}
pos1 = FindNoCase(dbline[0],smap);
if (fDebugFile) *fDebugFile << "map ? "<<dbline[0]<<" "<<smap<<" "<<pos1<<" "<<dbline.size()<<endl;
if (pos1 != minus1 && dbline.size()>6) {
Int_t imodel, icrate, islot, inorm;
UInt_t header, mask;
char cdum[20];
sscanf(sinput.c_str(),"%s %d %d %d %x %x %d \n",cdum,&imodel,&icrate,&islot, &header, &mask, &inorm);
if ((fNormSlot >= 0) && (fNormSlot != inorm)) cout << "SBSScalerEvtHandler::WARN: contradictory norm slot "<<fNormSlot<<" "<<inorm<<endl;
fNormSlot = inorm; // slot number used for normalization. This variable is not used but is checked.
Int_t clkchan = -1;
Double_t clkfreq = 1;
if (dbline.size()>8) {
clkchan = atoi(dbline[7].c_str());
clkfreq = 1.0*atoi(dbline[8].c_str());
fClockChan=clkchan;
fClockFreq=clkfreq;
}
if (fDebugFile) {
*fDebugFile << "map line "<<dec<<imodel<<" "<<icrate<<" "<<islot<<endl;
*fDebugFile <<" header 0x"<<hex<<header<<" 0x"<<mask<<dec<<" "<<inorm<<" "<<clkchan<<" "<<clkfreq<<endl;
}
switch (imodel) {
case 560:
scalers.push_back(new Scaler560(icrate, islot));
if(!fOnlyBanks) fRocSet.insert(icrate);
fModuleSet.insert(imodel);
break;
case 1151:
scalers.push_back(new Scaler1151(icrate, islot));
if(!fOnlyBanks) fRocSet.insert(icrate);
fModuleSet.insert(imodel);
break;
case 3800:
scalers.push_back(new Scaler3800(icrate, islot));
if(!fOnlyBanks) fRocSet.insert(icrate);
fModuleSet.insert(imodel);
break;
case 3801:
scalers.push_back(new Scaler3801(icrate, islot));
if(!fOnlyBanks) fRocSet.insert(icrate);
fModuleSet.insert(imodel);
break;
// case 9001: // TI Scalers
// scalers.push_back(new Scaler9001(icrate, islot));
// if(!fOnlyBanks) fRocSet.insert(icrate);
// fModuleSet.insert(imodel);
// break;
// case 9250: // FADC250 Scalers
// scalers.push_back(new Scaler9250(icrate, islot));
// if(!fOnlyBanks) fRocSet.insert(icrate);
// fModuleSet.insert(imodel);
// break;
}
if (scalers.size() > 0) {
UInt_t idx = scalers.size()-1;
// Headers must be unique over whole event, not
// just within a ROC
scalers[idx]->SetHeader(header, mask);
// The normalization slot has the clock in it, so we automatically recognize it.
// fNormIdx is the index in scaler[] and
// fNormSlot is the slot#, checked for consistency
if (clkchan >= 0) {
scalers[idx]->SetClock(defaultDT, clkchan, clkfreq);
cout << "Setting scaler clock ... channel = "<<clkchan<<" ... freq = "<<clkfreq<<endl;
if (fDebugFile) *fDebugFile <<"Setting scaler clock ... channel = "<<clkchan<<" ... freq = "<<clkfreq<<endl;
fNormIdx = idx;
if (islot != fNormSlot) cout << "SBSScalerEvtHandler:: WARN: contradictory norm slot ! "<<islot<<endl;
}
}
}
}
}
// can't compare UInt_t to Int_t (compiler warning), so do this
nscalers=0;
for (size_t i=0; i<scalers.size(); i++) nscalers++;
// need to do LoadNormScaler after scalers created and if fNormIdx found
if (fDebugFile) *fDebugFile <<"fNormIdx = "<<fNormIdx<<endl;
if ((fNormIdx >= 0) && fNormIdx < nscalers) {
for (Int_t i = 0; i < nscalers; i++) {
if (i==fNormIdx) continue;
scalers[i]->LoadNormScaler(scalers[fNormIdx]);
}
}
#ifdef HARDCODED
// This code is superseded by the parsing of a map file above. It's another way ...
if (fName == "Left") {
AddVars("TSbcmu1", "BCM x1 counts", 1, 4, ICOUNT);
AddVars("TSbcmu1r","BCM x1 rate", 1, 4, IRATE);
AddVars("TSbcmu3", "BCM u3 counts", 1, 5, ICOUNT);
AddVars("TSbcmu3r", "BCM u3 rate", 1, 5, IRATE);
} else {
AddVars("TSbcmu1", "BCM x1 counts", 0, 4, ICOUNT);
AddVars("TSbcmu1r","BCM x1 rate", 0, 4, IRATE);
AddVars("TSbcmu3", "BCM u3 counts", 0, 5, ICOUNT);
AddVars("TSbcmu3r", "BCM u3 rate", 0, 5, IRATE);
}
#endif
DefVars();
#ifdef HARDCODED
// This code is superseded by the parsing of a map file above. It's another way ...