-
Notifications
You must be signed in to change notification settings - Fork 4
/
helpers.py
131 lines (106 loc) · 5.01 KB
/
helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import numpy as np
import os
from sklearn.model_selection import train_test_split
def train_val_test_split(indices, file_name):
"""Train-validation-test split of indices"""
if not os.path.exists(file_name):
# the data, split between train and test sets
train_idx, test_idx = train_test_split(indices,
test_size=0.33,
random_state=42)
train_idx, val_idx= train_test_split(train_idx,
test_size=0.25,
random_state=1)
train_idx = sorted(train_idx)
val_idx = sorted(val_idx)
test_idx = sorted(test_idx)
np.savez(file_name, train_idx, val_idx, test_idx)
else:
data = np.load(file_name)
train_idx, val_idx, test_idx = data["arr_0"], data["arr_1"], data["arr_2"]
return train_idx, val_idx, test_idx
def global_standardization(X):
"""Does not have all the positive piels
Ref: https://machinelearningmastery.com/how-to-manually-scale-image-pixel-data-for-deep-learning/"""
print(f'Image shape: {X[0].shape}')
print(f'Data Type: {X[0].dtype}')
X = X.astype('float32')
print("***")
## GLOBAL STANDARDIZATION
# calculate global mean and standard deviation
mean, std = X.mean(), X.std()
print(f'Mean: {mean:.3f} | Std: {std:.3f}')
print(f'Min: {X.min():.3f} | Max: {X.max():.3f}')
# global standardization of pixels
X = (X - mean) / std
# confirm it had the desired effect
mean, std = X.mean(), X.std()
print(f'Mean: {mean:.3f} | Std: {std:.3f}')
print(f'Min: {X.min():.3f} | Max: {X.max():.3f}')
return X
def positive_global_standardization(X):
"""Has all positive pixels
Ref: https://machinelearningmastery.com/how-to-manually-scale-image-pixel-data-for-deep-learning/"""
mean, std = X.mean(), X.std()
print(f"Mean: {mean:.3f} | Std: {std:.3f}")
# global standardization of pixels
X = (X - mean) / std
# clip pixel values to [-1,1]
X = np.clip(X, -1.0, 1.0)
# shift from [-1,1] to [0,1] with 0.5 mean
X = (X + 1.0) / 2.0
# confirm it had the desired effect
mean, std = X.mean(), X.std()
print(f'Mean: {mean:.3f} | Std: {std:.3f}')
print(f'Min: {X.min():.3f} | Max: {X.max():.3f}')
return X
def rescale_images(original_images):
"""Rescale the protein images"""
mobile_net_possible_dims = [128, 160, 192, 224]
dim_goal = 128
for dim in mobile_net_possible_dims:
if original_images.shape[1] <= dim:
dim_goal = dim
break;
print(f"Image rescaled from dimension {original_images.shape[1]} to {dim_goal} for MobileNet")
scale = dim_goal/original_images.shape[1]
images = np.empty((original_images.shape[0], dim_goal, dim_goal))
for i, original_image in enumerate(original_images):
images[i] = rescale(original_image, (scale, scale), multichannel=False)
return images
def add_gaussian_noise(projections, noise_var):
"""Add Gaussian noise to the protein projection image"""
noise_sigma = noise_var**0.5
nproj,row,col = projections.shape
gauss_noise = np.random.normal(0, noise_sigma, (nproj, row, col))
gauss_noise = gauss_noise.reshape(nproj, row, col)
projections = projections + gauss_noise
return projections
def add_triangle_translation(projections, left_limit, peak_limit, right_limit):
"""Add triangular distribution shift to protein center"""
horizontal_shift = np.random.triangular(left_limit, peak_limit, right_limit, len(projections))
vertical_shift = np.random.triangular(left_limit, peak_limit, right_limit, len(projections))
for i, (hs, vs) in enumerate(zip(horizontal_shift, vertical_shift)):
projections[i] = np.roll(projections[i], int(hs), axis=0) # shift 1 place in horizontal axis
projections[i] = np.roll(projections[i], int(vs), axis=1) # shift 1 place in vertical axis
return projections
def projections_preprocessing(projections, angles_true, settings=None):
"""Collection of projection's preprocessing"""
settings_default = dict(
noise={"variance":0.0},
shift={"left_limit":-0.01,
"peak_limit":0,
"right_limit":0.01},
channels="gray")
if settings is None:
settings = {}
settings_final = {**settings_default, **settings}
projections = add_gaussian_noise(projections, settings_final["noise"]["variance"])
projections = add_triangle_translation(projections, left_limit=settings_final["shift"]["left_limit"], peak_limit=settings_final["shift"]["peak_limit"], right_limit=settings_final["shift"]["right_limit"])
X, y = np.array(projections, dtype=np.float32), np.array(angles_true, dtype=np.float32)
X = global_standardization(X)
if settings_final["channels"] == "rgb":
X = np.stack((X,)*3, axis=-1)
elif settings_final["channels"] == "gray":
X = X[:,:,:,np.newaxis]
return X, y