-
Notifications
You must be signed in to change notification settings - Fork 18
/
setup.m
88 lines (78 loc) · 2.84 KB
/
setup.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
function [spec] = setup(omega, eps0, eps_lims, mode_nums, varargin)
% SPEC = SETUP(OMEGA, EPS0, EPS_LIMS, MODE_NUMS, [PHASE])
%
% Description
% Sets up the nanophotonic waveguide coupler design problem.
%
% Specifically, SETUP() determines the boundary values at the
% input and output edges of the device (left and right respectively).
%
% Inputs
% OMEGA: Positive scalar.
% The design (angular) frequency.
%
% EPS0: 2-d array.
% The initial permittivity of the structure. It is recommended that
% the permittivities in the two leftmost and two rightmost layers of
% cells be uniform, since the fields are fixed in those cells.
%
% EPS_LIMS: 2-element vector.
% The minimum and maximum allowable values for the permittivity.
%
% MODE_NUMS: 2-element vector of integers.
% The order of the input and output waveguide modes, respectively.
% For example, to select the fundamental mode for the input and
% the second-order mode for the output use MODE_NUMS = [1 2].
%
% To interactively select a mode, input a mode number of 0.
%
% If the selected modes are non-propagating (evanesent), a warning will
% be issued.
%
% BOUNDARY: String (optional).
% If set to 'periodic', then we assume the top and bottom boundaries to
% to have periodic boundary conditions.
%
% Outputs
% SPEC: Structure.
% Contains the input and output information which defines the design
% problem. Sets up the boundary-value formulation for use as the
% design objective.
%
% SPEC is mainly used as an input to the DESIGN() function.
dims = size(eps0);
% Create the specification structure.
spec.omega = omega;
spec.eps0 = eps0;
spec.eps_lims = sort(eps_lims);
%
% Calculate the input and output modes.
%
figure(1);
fprintf('Input mode calculation (figure 1)\n');
[spec.in.beta, spec.in.Hz, spec.in.Ey] = ...
ob1_wgmode(spec.omega, eps0(1,:), mode_nums(1));
figure(2);
fprintf('Output mode calculation (figure 2)\n');
[spec.out.beta, spec.out.Hz, spec.out.Ey] = ...
ob1_wgmode(spec.omega, eps0(end,:), mode_nums(2));
%
% Set up the boundary values.
%
% Determine phase relation between input and output modes.
phase = mean([spec.in.beta, spec.out.beta]) * (size(eps, 1) - 1);
if isempty(varargin)
spec.bc = 'pml';
elseif strcmp(varargin{1}, 'periodic')
spec.bc = 'per';
else
error('Not a valid option for BOUNDARY.');
end
% Create boundary field conditions.
% Two layers of Hz fields are needed since we must fix Hz as well as its
% derivative in the normal direction.
spec.Hz0 = zeros(dims);
spec.Hz0(1,:) = spec.in.Hz;
spec.Hz0(2,:) = spec.in.Hz * exp(i * spec.in.beta);
spec.Hz0(end-1,:) = spec.out.Hz * exp(i * (phase - spec.out.beta));
spec.Hz0(end,:) = spec.out.Hz * exp(i * phase);