-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy path0416-partition-equal-subset-sum.cpp
55 lines (47 loc) · 1.71 KB
/
0416-partition-equal-subset-sum.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
/*
* Copyright(c) 2021 Jiau Zhang
* For more information see <https://github.com/JiauZhang/algorithms>
*
* This repo is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with THIS repo. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* 解题思路:
* 本题的核心思路是把该问题转化为 0-1 背包问题,题目目标是把有限数组分成两份
* 使得两个组合各自的和相等,所以如果有可能存在,那么只需要找到一个组合就行
* 即在有限的可选物品中选择或不选择某个物品达到和为某个数,即背包问题
*/
class Solution {
public:
bool canPartition(vector<int>& nums) {
int sum = 0, max_num = INT_MIN;
for (auto n: nums) {
sum += n;
max_num = max(max_num, n);
}
int half = sum / 2;
if ((sum & 0x01) || (max_num > half))
return false;
if (max_num == half)
return true;
vector<int> buffer(half+1, false);
if (nums[0] <= half)
buffer[nums[0]] = true;
for (int i=1; i<nums.size(); i++) {
for (int j=half; j>=nums[i]; j--) {
if (!buffer[j])
buffer[j] = buffer[j-nums[i]];
}
}
return buffer[half];
}
};