-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathleo_main.py
32 lines (24 loc) · 837 Bytes
/
leo_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
from leo.data_import import load_iris
from leo.data_split import splitting
# Load the Iris dataset
dataset = load_iris()
# Prepare features and target
X = dataset.iloc[:, :-1] # Features
y = dataset.iloc[:, -1] # Target class
# Split the data
X_train, X_test, y_train, y_test = splitting(X, y)
# Create classification pipeline
pipeline = Pipeline(steps=[
('scaler', StandardScaler()),
('classifier', RandomForestClassifier(n_estimators=100, random_state=42))
])
# Train the model
pipeline.fit(X_train, y_train)
# Make predictions
y_pred = pipeline.predict(X_test)
# Evaluate the model
print("Accuracy:", accuracy_score(y_test, y_pred))