-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathq_shear.py
240 lines (144 loc) · 5.5 KB
/
q_shear.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import numpy as np
from math import pi
# shear flow qb in the z' axis
def qb_z(parameters, element_locations):
qb_1 = np.array([0])
qb_2 = np.array([0])
qb_spar = 0
I_yy = parameters['Iyy']
z_booms = element_locations['z_booms']
B_booms = parameters['Aboomsz'] #check if this should be y or z
s_booms = element_locations['s_booms']
S_z = parameters['Shear_z']
z_cg = parameters['cog_z']
h_a = parameters['h']
n_stiffener = parameters['n_stiffener']
d = parameters['skin_length']
qb = 0
for i in range(len(z_booms)):
if s_booms[i]<d:
qb = - (S_z/I_yy)*(B_booms[i] * (z_booms[i]-z_cg))
qb_1 = np.append(qb_1, qb + qb_1[i-1])
arc = (pi * h_a) / 4
j_1 = np.where(np.logical_and(s_booms > d, s_booms < arc + d))[0][::-1]
for j in j_1:
qb = qb - (S_z/I_yy)*(B_booms[j] * (z_booms[j]-z_cg))
qb_2 = np.append(qb_2, qb + qb_2[j-j_1[0]-1])
qb_sym = np.append(qb_1, qb_2[::-1])
if n_stiffener % 2 ==0:
qb_panel = np.append(qb_sym, qb_sym[::-1])
else:
qb_panel = np.append(qb_sym, qb_sym[::-1][1:])
parameters['qb_spar_z_shear'] = qb_spar
parameters['qb_panel_shear'] = qb_panel
# shear flow qb in the y' axis
def qb_y(parameters, element_locations):
I_zz = parameters['Izz']
y_booms = element_locations['y_booms']
B_booms = parameters['Aboomsy'] #check if this should be y or z
s_booms = element_locations['s_booms']
S_y = np.transpose(parameters['Shear_y'])
A_cell1 = parameters['A_cell1']
A_cell2 = parameters['A_cell2']
h_a = parameters['h']
t_sk = parameters['t_skin']
t_sp = parameters['t_spar']
G = parameters['G']
C_a = parameters['c']
d = parameters['skin_length']
z_Sy = parameters['zsc']
qb_1 = np.zeros([1,len(S_y[0])])
qb_2 = np.zeros([1,len(S_y[0])])
qb_3 = np.zeros([1,len(S_y[0])])
for i in range(len(y_booms)):
if s_booms[i] <= d:
qb = - (S_y / I_zz) * (B_booms[i] * (y_booms[i]))
qb_1 = np.vstack([qb_1, qb + qb_1[-1,:]])
else:
spar_number1 = i
break
qb_1 = qb_1[1:,:]
qb_spar = qb_1[-1,:] - (S_y / I_zz) * (B_booms[spar_number1] * (y_booms[spar_number1]))
semi = (pi * h_a) / 2
j_1 = np.where(np.logical_and(s_booms > d, s_booms < semi + d))[0]
parameters['j'] = j_1
for j in j_1:
qb = - (S_y / I_zz) * (B_booms[j] * (y_booms[j]))
qb_2 = np.vstack([qb_2, qb + qb_2[-1,:]])
qb_2 = qb_2[1:,:]
k_1 = np.where(np.logical_and(s_booms > (d + semi), s_booms < semi+2*d))[0]
parameters['k'] = k_1
spar_number2 = j_1[-1] + 1
qb_3 = np.vstack([qb_3, qb_2[-1] + qb_spar - (S_y / I_zz) * (B_booms[spar_number2] * (y_booms[spar_number2]))])
for k in k_1:
qb = - S_y / I_zz * B_booms[k] * y_booms[k]
qb_3 = np.vstack([qb_3, qb + qb_3[-1,:]])
qb_3 = qb_3[1:,:]
#q_0 and angle of twist of airfoil
i_1 = range(len(qb_1))
i_2 = range(len(qb_1), len(qb_1) + len(qb_2))
i_3 = range(len(qb_1) + len(qb_2), len(qb_1) + len(qb_2) + len(qb_3))
#finding the redundant shear flow in both the two cells
o_TE = 0
o_LE = 0
for i in i_1:
if i==0:
o_TE = o_TE + qb_1[i] * (s_booms[i] - 0 )/(t_sk * G)
else:
o_TE = o_TE + qb_1[i] * (s_booms[i] - s_booms[i-1] )/(t_sk * G)
o_TE = o_TE + (qb_spar * h_a) / (t_sp * G)
for i in i_3:
if i == i_3[-1]:
o_TE = o_TE + qb_3[i - i_2[-1] -1] * (s_booms[i] - s_booms[i-1] )/(t_sk * G)
else:
o_TE = o_TE + qb_3[i - i_2[-1] -1] * (s_booms[i] - s_booms[i-2] )/(t_sk * G)
for i in i_2:
o_LE = o_LE + qb_2[i - i_1[-1] -1 ] * (s_booms[i] - s_booms[i-1])/(t_sk * G)
o_LE = o_LE + (qb_spar * h_a) /(t_sp *G)
#moment arm
r = (h_a /2) * np.cos(np.arctan2((h_a/2), C_a - h_a / 2))
M = 0
for i in i_1:
if i ==0:
F = (s_booms[i] - 0) * qb_1[0]
M = M + (F*r)
else:
F = (s_booms[i] - s_booms[i-1]) * qb_1[i]
M = M + (F*r)
F = h_a * (qb_spar)
M = M + (F*r)
for i in i_3:
if i == i_3[-1]:
F = (s_booms[i] - s_booms[i-1]) * qb_3[i - i_2[-1] -1]
M = M + F*r
else:
F = (s_booms[-1] - s_booms[i-1]) * qb_3[i - i_2[-1] -1]
M = M + (F*r)
for i in i_2:
F = (s_booms[i] - s_booms[i-1]) * qb_2[i-i_1[-1] -1]
M = M + (F * (h_a/2))
# finding matrix A and y to find the shear flow in the sections
#matrix A has entries a(1-3)(1-3)
a11 = ((semi)/(t_sk *G) + h_a/(t_sp * G)) / (2 * A_cell1)
a12 = -h_a /( t_sk *G) /(2 * A_cell1)
a13 = -1
a21 = - h_a / (t_sp * G ) /(2 *A_cell2)
a22 = (2 * d/ (t_sk * G ) + h_a / ( t_sp * G)) / (2 * A_cell2)
a23 = -1
a31 = 2 * A_cell1
a32 = 2 * A_cell2
a33 = 0
y1 = -o_LE
y2 = -o_TE
y3 = -S_y * (z_Sy - (C_a -h_a/2)) - M
A = np.array([[a11, a12, a13], [a21, a22, a23], [a31, a32, a33]])
y = np.vstack([y1, y2, y3])
q0_LE, q0_TE, RoT = np.dot(np.linalg.inv(A), y)
q1 = qb_1 + q0_TE
q2 = qb_2 + q0_LE
q3 = qb_3 + q0_TE
q_spar = qb_spar + q0_TE + q0_LE
q_skin = np.vstack([np.vstack([q1,q2]),q3])
parameters['qb_spar_y_shear'] = q_spar
parameters['qb_skin_shear'] = q_skin
parameters['rot_shear'] = RoT