-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathnet.py
199 lines (177 loc) · 7.07 KB
/
net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import torch.nn as nn
import torch
from function import normal
from function import calc_mean_std
import scipy.stats as stats
from torchvision.utils import save_image
decoder = nn.Sequential(
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(512, 256, (3, 3)),
nn.ReLU(),
nn.Upsample(scale_factor=2, mode='nearest'),
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(256, 256, (3, 3)),
nn.ReLU(),
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(256, 256, (3, 3)),
nn.ReLU(),
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(256, 256, (3, 3)),
nn.ReLU(),
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(256, 128, (3, 3)),
nn.ReLU(),
nn.Upsample(scale_factor=2, mode='nearest'),
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(128, 128, (3, 3)),
nn.ReLU(),
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(128, 64, (3, 3)),
nn.ReLU(),
nn.Upsample(scale_factor=2, mode='nearest'),
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(64, 64, (3, 3)),
nn.ReLU(),
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(64, 3, (3, 3)),
)
vgg = nn.Sequential(
nn.Conv2d(3, 3, (1, 1)),
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(3, 64, (3, 3)),
nn.ReLU(), # relu1-1
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(64, 64, (3, 3)),
nn.ReLU(), # relu1-2
nn.MaxPool2d((2, 2), (2, 2), (0, 0), ceil_mode=True),
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(64, 128, (3, 3)),
nn.ReLU(), # relu2-1
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(128, 128, (3, 3)),
nn.ReLU(), # relu2-2
nn.MaxPool2d((2, 2), (2, 2), (0, 0), ceil_mode=True),
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(128, 256, (3, 3)),
nn.ReLU(), # relu3-1
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(256, 256, (3, 3)),
nn.ReLU(), # relu3-2
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(256, 256, (3, 3)),
nn.ReLU(), # relu3-3
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(256, 256, (3, 3)),
nn.ReLU(), # relu3-4
nn.MaxPool2d((2, 2), (2, 2), (0, 0), ceil_mode=True),
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(256, 512, (3, 3)),
nn.ReLU(), # relu4-1, this is the last layer used
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(512, 512, (3, 3)),
nn.ReLU(), # relu4-2
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(512, 512, (3, 3)),
nn.ReLU(), # relu4-3
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(512, 512, (3, 3)),
nn.ReLU(), # relu4-4
nn.MaxPool2d((2, 2), (2, 2), (0, 0), ceil_mode=True),
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(512, 512, (3, 3)),
nn.ReLU(), # relu5-1
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(512, 512, (3, 3)),
nn.ReLU(), # relu5-2
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(512, 512, (3, 3)),
nn.ReLU(), # relu5-3
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(512, 512, (3, 3)),
nn.ReLU() # relu5-4
)
class Blending_Module(nn.Module):
def __init__(self, in_dim):
super(Blending_Module, self).__init__()
self.J = nn.Conv2d(in_dim , in_dim, (1,1))
self.K = nn.Conv2d(in_dim , in_dim, (1,1))
self.W = nn.Conv2d(in_dim , in_dim, (1,1))
self.R = nn.Conv2d(in_dim , in_dim, (1,1))
def forward(self, content_enhance, style_enhance):
Fc_tilde = self.J(normal(content_enhance))
B,C,H,W = style_enhance.size()
Fs_tilde = self.K(normal(style_enhance)).view(B,C,H*W)
Gram_sum = Fs_tilde.sum(-1).view(B,C,1)
Gram_s = (Fs_tilde @ Fs_tilde.permute(0,2,1) / Gram_sum).view(B,C,C,1)
#Weight Gram Matrix
Weighted_Gram = self.W(Gram_s).view(B,C,C)
#get C weighted value
sigma = torch.diagonal(Weighted_Gram,dim1=-2,dim2=-1).view(B,C,1,1)
Fcs = self.R(Fc_tilde * sigma + content_enhance)
return Fcs
class CrSp_Module(nn.Module):
def __init__(self, in_dim, K, type):
super(CrSp_Module, self).__init__()
self.f = nn.Conv2d(in_dim , in_dim , (1,1), groups=in_dim)
self.g = nn.Conv2d(in_dim , in_dim , (1,1), groups=in_dim)
self.K = K
self.type = type
def Crystallization(self, input):
if self.type == 'style':
B,C,H,W = input.shape
input_zipped = input.view(-1,C,H*W)
input_average = input_zipped.mean(dim=2).view(-1,C,1) #B*H*1
input_center = input_zipped - input_average
U, Sigma, V = torch.svd(input_center)
VT=V.permute(0,2,1)
temp = (U[:, :,0:self.K] @ torch.diag_embed(Sigma[:, 0:self.K]) @ VT[:, 0:self.K,:] + input_average).view(B,C,H,W)
return self.g(temp)
elif self.type == 'content':
B,C,H,W = input.shape
input_zipped = input.view(-1,C,H*W)
input_average = input_zipped.mean(dim=2).view(-1,C,1)
input_center = input_zipped - input_average
U,Sigma,V = torch.svd(input_center)
VT=V.permute(0,2,1)
temp = (U[:, :,self.K:] @ torch.diag_embed(Sigma[:, self.K:]) @ VT[:, self.K:,:] + input_average).view(B,C,H,W)
return self.g(temp)
def forward(self, content_feat):
feature_globe = self.Crystallization(content_feat)
feature_ori = self.f(content_feat)
return feature_globe + feature_ori
class CSBNet(nn.Module):
def __init__(self, in_dim, KC, KS):
super(CSBNet, self).__init__()
self.crsp_c = CrSp_Module(in_dim, KC, type='content')
self.crsp_s = CrSp_Module(in_dim, KS, type='style')
self.blending_module = Blending_Module(512)
self.decoder = decoder
def forward(self, content, style):
Fc_enhanced = self.crsp_c(content)
Fs_enhanced = self.crsp_s(style)
Fcs = self.blending_module(Fc_enhanced, Fs_enhanced)
return self.decoder(Fcs)
class Net(nn.Module):
def __init__(self, encoder, KC, KS):
super(Net, self).__init__()
enc_layers = list(encoder.children())
self.enc_1 = nn.Sequential(*enc_layers[:4]) # input -> relu1_1
self.enc_2 = nn.Sequential(*enc_layers[4:11]) # relu1_1 -> relu2_1
self.enc_3 = nn.Sequential(*enc_layers[11:18]) # relu2_1 -> relu3_1
self.enc_4 = nn.Sequential(*enc_layers[18:31]) # relu3_1 -> relu4_1
self.enc_5 = nn.Sequential(*enc_layers[31:44]) # relu4_1 -> relu5_1
self.csbnet = CSBNet(512, KC, KS)
for name in ['enc_1', 'enc_2', 'enc_3', 'enc_4', 'enc_5']:
for param in getattr(self, name).parameters():
param.requires_grad = False
def encode_with_intermediate(self, input):
results = [input]
for i in range(5):
func = getattr(self, 'enc_{:d}'.format(i + 1))
results.append(func(results[-1]))
return results[1:]
def forward(self, content, style):
content_feats = self.encode_with_intermediate(content)
style_feats = self.encode_with_intermediate(style)
Ics = self.csbnet(content_feats[-2], style_feats[-2])
return Ics