forked from T3P3/kossel
-
Notifications
You must be signed in to change notification settings - Fork 0
/
threads.scad
195 lines (152 loc) · 6.53 KB
/
threads.scad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
// http://dkprojects.net/openscad-threads/threads.scad
// Copyright 2012 Dan Kirshner <[email protected]>
/*
* Version 1.2. 2012-09-09 Use discrete polyhedra rather than linear_extrude()
* Version 1.1. 2012-09-07 Corrected to right-hand threads!
*/
// Examples:
metric_thread(8, 1, 8);
//english_thread(1/4, 10, 1);
// Rohloff hub thread:
//metric_thread(34, 1, 10, internal=true, n_starts=6);
// ----------------------------------------------------------------------------
pi = 3.14159265;
// ----------------------------------------------------------------------------
function segments(diameter) = min(50, ceil(diameter*6));
// ----------------------------------------------------------------------------
// internal - true = clearances for internal thread (e.g., a nut).
// false = clearances for external thread (e.g., a bolt).
// (Internal threads should be "cut out" from a solid using
// difference()).
// n_starts - Number of thread starts (e.g., DNA, a "double helix," has
// n_starts=2). See wikipedia Screw_thread.
module metric_thread(diameter=8, pitch=1, length=1, internal=false, n_starts=1)
{
// Number of turns needed.
n_turns = floor(length/pitch);
n_segments = segments(diameter);
h = pitch * cos(30);
union() {
intersection() {
// Start one below z = 0. Gives an extra turn at each end.
for (i=[-1*n_starts : n_turns-1]) {
translate([0, 0, i*pitch]) {
metric_thread_turn(diameter, pitch, internal, n_starts);
}
}
// Cut to length.
translate([0, 0, length/2]) {
cube([diameter*1.1, diameter*1.1, length], center=true);
}
}
// Solid center, including Dmin truncation.
if (internal) {
cylinder(r=diameter/2 - h*5/8, h=length, $fn=n_segments);
} else {
// External thread includes additional relief.
cylinder(r=diameter/2 - h*5.3/8, h=length, $fn=n_segments);
}
}
}
// ----------------------------------------------------------------------------
// Input units in inches.
// Note: units of measure in drawing are mm!
module english_thread(diameter=0.25, threads_per_inch=20, length=1,
internal=false, n_starts=1)
{
// Convert to mm.
mm_diameter = diameter*25.4;
mm_pitch = (1.0/threads_per_inch)*25.4;
mm_length = length*25.4;
echo(str("mm_diameter: ", mm_diameter));
echo(str("mm_pitch: ", mm_pitch));
echo(str("mm_length: ", mm_length));
metric_thread(mm_diameter, mm_pitch, mm_length, internal, n_starts);
}
// ----------------------------------------------------------------------------
module metric_thread_turn(diameter, pitch, internal, n_starts)
{
n_segments = segments(diameter);
fraction_circle = 1.0/n_segments;
for (i=[0 : n_segments-1]) {
rotate([0, 0, i*360*fraction_circle]) {
translate([0, 0, i*n_starts*pitch*fraction_circle]) {
thread_polyhedron(diameter/2, pitch, internal, n_starts);
}
}
}
}
// ----------------------------------------------------------------------------
// z (see diagram) as function of current radius.
// (Only good for first half-pitch.)
function z_fct(current_radius, radius, pitch)
= 0.5*(current_radius - (radius - 0.875*pitch*cos(30)))
/cos(30);
// ----------------------------------------------------------------------------
module thread_polyhedron(radius, pitch, internal, n_starts)
{
n_segments = segments(radius*2);
fraction_circle = 1.0/n_segments;
h = pitch * cos(30);
outer_r = radius + (internal ? h/20 : 0); // Adds internal relief.
//echo(str("outer_r: ", outer_r));
inner_r = radius - 0.875*h; // Does NOT do Dmin_truncation - do later with
// cylinder.
// Make these just slightly bigger (keep in proportion) so polyhedra will
// overlap.
x_incr_outer = outer_r * fraction_circle * 2 * pi * 1.005;
x_incr_inner = inner_r * fraction_circle * 2 * pi * 1.005;
z_incr = n_starts * pitch * fraction_circle * 1.005;
/*
(angles x0 and x3 inner are actually 60 deg)
/\ (x2_inner, z2_inner) [2]
/ \
(x3_inner, z3_inner) / \
[3] \ \
|\ \ (x2_outer, z2_outer) [6]
| \ /
| \ /|
z | \/ / (x1_outer, z1_outer) [5]
| | | /
| x | |/
| / | / (x0_outer, z0_outer) [4]
| / | / (behind: (x1_inner, z1_inner) [1]
|/ | /
y________| |/
(r) / (x0_inner, z0_inner) [0]
*/
x1_outer = outer_r * fraction_circle * 2 * pi;
z0_outer = z_fct(outer_r, radius, pitch);
//echo(str("z0_outer: ", z0_outer));
//polygon([[inner_r, 0], [outer_r, z0_outer],
// [outer_r, 0.5*pitch], [inner_r, 0.5*pitch]]);
z1_outer = z0_outer + z_incr;
// Rule for triangle ordering: look at polyhedron from outside: points must
// be in clockwise order.
polyhedron(
points = [
[-x_incr_inner/2, -inner_r, 0], // [0]
[x_incr_inner/2, -inner_r, z_incr], // [1]
[x_incr_inner/2, -inner_r, pitch + z_incr], // [2]
[-x_incr_inner/2, -inner_r, pitch], // [3]
[-x_incr_outer/2, -outer_r, z0_outer], // [4]
[x_incr_outer/2, -outer_r, z0_outer + z_incr], // [5]
[x_incr_outer/2, -outer_r, pitch - z0_outer + z_incr], // [6]
[-x_incr_outer/2, -outer_r, pitch - z0_outer] // [7]
],
triangles = [
[0, 3, 4], // This-side trapezoid, bottom
[3, 7, 4], // This-side trapezoid, top
[1, 5, 2], // Back-side trapezoid, bottom
[2, 5, 6], // Back-side trapezoid, top
[0, 1, 2], // Inner rectangle, bottom
[0, 2, 3], // Inner rectangle, top
[4, 6, 5], // Outer rectangle, bottom
[4, 7, 6], // Outer rectangle, top
[7, 2, 6], // Upper rectangle, bottom
[7, 3, 2], // Upper rectangle, top
[0, 5, 1], // Lower rectangle, bottom
[0, 4, 5] // Lower rectangle, top
]
);
}