forked from mlco2/codecarbon
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlogging_to_file.py
55 lines (43 loc) · 1.44 KB
/
logging_to_file.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import logging
import sys
import time
from codecarbon import OfflineEmissionsTracker
def train_model():
"""
This function will do nothing during (occurrence * delay) seconds.
The Code Carbon API will be called every (measure_power_secs * api_call_interval) seconds.
"""
occurrence = 60 * 24 * 365 * 100 # Run for 100 years !
delay = 60 # Seconds
for i in range(occurrence):
print(f"{occurrence * delay - i * delay} seconds before ending script...")
time.sleep(delay)
if __name__ == "__main__":
tracker = OfflineEmissionsTracker(
country_iso_code="FRA",
measure_power_secs=30,
project_name="ultra_secret",
)
# Clear CodeCarbon handlers
logger = logging.getLogger("codecarbon")
while logger.hasHandlers():
logger.removeHandler(logger.handlers[0])
# Define a log formatter
formatter = logging.Formatter(
"%(asctime)s - %(name)-12s: %(levelname)-8s %(message)s"
)
# Create file handler which logs debug messages
fh = logging.FileHandler("codecarbon.log")
fh.setLevel(logging.DEBUG)
fh.setFormatter(formatter)
logger.addHandler(fh)
consoleHandler = logging.StreamHandler(sys.stdout)
consoleHandler.setFormatter(formatter)
consoleHandler.setLevel(logging.WARNING)
logger.addHandler(consoleHandler)
logger.debug("GO!")
tracker.start()
try:
model = train_model()
finally:
tracker.stop()