forked from mlco2/codecarbon
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnist_grid_search.py
41 lines (31 loc) · 1.3 KB
/
mnist_grid_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import tensorflow as tf
from sklearn.model_selection import GridSearchCV
from tensorflow.keras.wrappers.scikit_learn import KerasClassifier
from codecarbon import EmissionsTracker
def build_model():
model = tf.keras.models.Sequential(
[
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation="relu"),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10),
]
)
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
model.compile(optimizer="adam", loss=loss_fn, metrics=["accuracy"])
return model
def main():
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
model = KerasClassifier(build_fn=build_model, epochs=1)
param_grid = dict(batch_size=list(range(32, 256 + 32, 32)))
grid = GridSearchCV(estimator=model, param_grid=param_grid)
tracker = EmissionsTracker(project_name="mnist_grid_search")
tracker.start()
grid_result = grid.fit(x_train, y_train)
emissions = tracker.stop()
print(f"Best Accuracy : {grid_result.best_score_} using {grid_result.best_params_}")
print(f"Emissions : {emissions} kg CO₂")
if __name__ == "__main__":
main()