forked from mlco2/codecarbon
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpytorch-multigpu-example.py
148 lines (124 loc) · 4.09 KB
/
pytorch-multigpu-example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import numpy as np
import torch
import torch.nn as nn
from torch import optim
from torch.utils.data import DataLoader
from torch.utils.data.sampler import SubsetRandomSampler
from torchvision import datasets
from torchvision.transforms import ToTensor
from codecarbon import EmissionsTracker
tracker = EmissionsTracker(project_name="pytorch-mnist-multigpu")
tracker.start()
# https://medium.com/@nutanbhogendrasharma/pytorch-convolutional-neural-network-with-mnist-dataset-4e8a4265e118
# https://pytorch.org/tutorials/beginner/blitz/data_parallel_tutorial.html#create-model-and-dataparallel
# https://gist.github.com/MattKleinsmith/5226a94bad5dd12ed0b871aed98cb123
# Parameters and DataLoaders
batch_size = 30
valid_ratio = 0.15
train_data = datasets.MNIST(
root=".",
train=True,
transform=ToTensor(),
download=True,
)
test_data = datasets.MNIST(root=".", train=False, transform=ToTensor())
n_valid = int(len(train_data) * valid_ratio)
indices = np.random.permutation(len(train_data))
valid_idx = indices[:n_valid]
train_idx = indices[n_valid:]
train_sampler = SubsetRandomSampler(train_idx)
valid_sampler = SubsetRandomSampler(valid_idx)
loaders = {
"train": DataLoader(
train_data,
batch_size=batch_size,
sampler=train_sampler,
num_workers=4,
pin_memory=True,
),
"val": DataLoader(
train_data,
batch_size=batch_size,
sampler=valid_sampler,
num_workers=4,
pin_memory=True,
),
"test": DataLoader(
test_data, batch_size=batch_size, shuffle=True, num_workers=2, pin_memory=True
),
}
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(
in_channels=1,
out_channels=16,
kernel_size=5,
stride=1,
padding=2,
),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2),
)
self.conv2 = nn.Sequential(
nn.Conv2d(16, 32, 5, 1, 2),
nn.ReLU(),
nn.MaxPool2d(2),
)
# fully connected layer, output 10 classes
self.out = nn.Linear(32 * 7 * 7, 10)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
# flatten the output of conv2 to (batch_size, 32 * 7 * 7)
x = x.view(x.size(0), -1)
output = self.out(x)
return output
cnn = CNN()
loss_func = nn.CrossEntropyLoss()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
optimizer = optim.Adam(cnn.parameters(), lr=0.001)
if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs!")
# dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
cnn = nn.DataParallel(cnn)
cnn.to(device)
bidx = 0
for epoch in range(10):
cnn.train()
# train for 1 epoch
for _, (image, label) in enumerate(loaders["train"]):
print(f"\rBatch {bidx} | Epoch {epoch}", end="")
bidx += 1
input = image.to(device)
optimizer.zero_grad()
output = cnn(input)
loss = loss_func(output, label.to(device))
loss.backward()
optimizer.step()
cnn.eval()
# Measure validation accuracy at each epoch
with torch.no_grad():
correct = 0
total = 0
for images, labels in loaders["val"]:
data = images.to(device)
test_output = cnn(images)
pred_y = torch.max(test_output, 1)[1].data.squeeze().cpu()
correct += float((pred_y == labels).sum().item())
total += float(labels.size(0))
print(f"\nValidation Accuracy: {correct / total:.3f}")
# Measure final test accuracy
with torch.no_grad():
correct = 0
total = 0
for images, labels in loaders["test"]:
data = images.to(device)
test_output = cnn(images)
pred_y = torch.max(test_output, 1)[1].data.squeeze().cpu()
correct += float((pred_y == labels).sum().item())
total += float(labels.size(0))
print(f"\nFinal test Accuracy: {correct / total:.3f}")
tracker.flush()
tracker.stop()