-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_eval_vqav2_zeroshot.py
320 lines (275 loc) · 13.4 KB
/
run_eval_vqav2_zeroshot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
sys.path.insert(0, os.path.join(os.path.dirname(os.path.abspath(__file__)), "../../.."))
import random
from dataclasses import dataclass, field
from typing import Optional
import numpy as np
import paddle
import paddle.distributed as dist
from paddle.distributed import fleet
from paddle.distributed.fleet.meta_parallel import get_rng_state_tracker
from paddlenlp.trainer import PdArgumentParser, TrainingArguments, get_last_checkpoint
from paddlemix.datasets import load_dataset
from paddlemix.models.blip2.configuration import Blip2Config
from paddlemix.models.blip2.modeling import Blip2ForConditionalGeneration
from paddlemix.models.blip2.utils import BlipCollator, create_tokenizer, load_model
from paddlemix.processors.blip_processing import (
Blip2Processor,
BlipImageProcessor,
BlipTextProcessor,
)
from paddlemix.trainer.blip2_trainer import BLIP2Trainer as Trainer
from paddlemix.utils.log import logger
class BlipCollator_VQA(BlipCollator):
"""
Data collator that will dynamically pad the inputs to the longest sequence in the batch.
Args:
processor (`paddlemix.processors.ProcessorMixin`):
The processor used for pre-process the data.
"""
def __init__(self, processor, mode="train"):
self.processor = processor
self.mode = mode
def __call__(self, data_list):
images = [sample["image"] for sample in data_list]
if "text_input" not in data_list[0].keys():
text = None
else:
text = [sample["text_input"] for sample in data_list]
image_id = [sample["image_id"] for sample in data_list]
question_id = [sample["question_id"] for sample in data_list]
batch = self.processor(
images=images,
text=text,
max_length=32,
return_tensors="pd",
return_attention_mask=True,
mode=self.mode,
)
batch.update({"image_id": image_id})
batch.update({"question_id": question_id})
return batch
@dataclass
class DataArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
Using `PdArgumentParser` we can turn this class
into argparse arguments to be able to specify them on
the command line.
"""
task_name: str = field(
default="coco_vqa",
metadata={"help": "The name of the task to use (via the datasets library)."},
)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
default="paddlemix/blip2-pretrained-opt2.7b",
metadata={"help": "Path to pretrained model or model identifier"},
)
text_model_name_or_path: str = field(
default="facebook/opt-2.7b",
metadata={"help": "The type of text model to use (OPT, T5)."},
)
@dataclass
class PreTrainingArguments(TrainingArguments):
"""
Arguments pertaining to what training options we are going to use during pretraining.
"""
weight_decay: float = field(default=0.05, metadata={"help": "Weight decay if we apply some."})
learning_rate: float = field(default=0.0001, metadata={"help": "The initial learning rate."})
num_train_epochs: float = field(default=10.0, metadata={"help": "Total number of training epochs to perform."})
warmup_start_lr: float = field(default=1e-6, metadata={"help": "Initial learning rate of warm up."})
eta_min: float = field(default=1e-5, metadata={"help": "The minimum value of learning rate."})
warmup_steps: int = field(default=2000, metadata={"help": "Number of warmup steps."})
lr_scheduler_name: str = field(default="CosineDecayWithWarmup", metadata={"help": "The scheduler name to use."})
per_device_train_batch_size: int = field(
default=128, metadata={"help": "Batch size per GPU core/CPU for training. (default: 8)"}
)
per_device_eval_batch_size: int = field(
default=64, metadata={"help": " Batch size per GPU core/CPU for evaluation. (default:8)"}
)
warmup_start_lr: float = field(default=1e-6, metadata={"help": " The initial learning rate of blip2."})
output_dir: str = field(default=".", metadata={"help": "The output path"})
do_eval: bool = field(default=True, metadata={"help": "Whether to evaluation."})
do_train: bool = field(default=True, metadata={"help": "Whether to train."})
logging_steps: int = field(default=50, metadata={"help": "Logging interval"})
evaluation_strategy: str = field(default="no", metadata={"help": "Evaluation strategy (epoch/steps/no)"})
fp16_opt_level: str = field(default="O1", metadata={"help": "Mixed Precision Type"})
fp16: bool = field(default=True, metadata={"help": "Whether to use mixed Precision"})
gradient_checkpointing: bool = field(
default=False, metadata={"help": "Forward recompute for saving graphics memory"}
)
tensor_parallel_degree: int = field(default=1, metadata={"help": "Set the number of tensor model parallel"})
sharding_parallel_degree: int = field(
default=1, metadata={"help": "Set the number of sharding, enable sharding parallel"}
)
pipeline_parallel_degree: int = field(default=1, metadata={"help": "Enable pipeline parallel"})
load_model_path: str = field(
default=None,
metadata={"help": "The path to model if you want to load weights from the specified path"},
)
benchmark: bool = field(
default=False,
metadata={"help": "Whether or not run benchmark (True/False)."},
)
profiler_options: Optional[str] = field(
default=None,
metadata={"help": "profiler_options (batch_range=[10,20])."},
)
def create_model(config, training_args=None):
blip2_config = Blip2Config.from_pretrained(config.model_name_or_path)
blip2_config.mp_degree = config.mp_degree
blip2_config.gradient_checkpointing = config.gradient_checkpointing
model = Blip2ForConditionalGeneration(blip2_config)
model.load_pretrained(
vision_and_bridge_name_or_path=getattr(config, "vision_and_bridge_name_or_path", None),
vision_name_or_path=getattr(config, "vision_name_or_path", None),
bridge_name_or_path=getattr(config, "bridge_name_or_path", None),
training_args=training_args,
)
paddle.device.cuda.empty_cache()
return model
def main():
parser = PdArgumentParser((ModelArguments, DataArguments, PreTrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Log model and data config
training_args.print_config(model_args, "Model")
training_args.print_config(data_args, "Data")
setdistenv(training_args)
model_args.data_world_rank = training_args.data_world_rank
model_args.data_world_size = training_args.data_world_size
paddle.set_device(training_args.device)
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, world_size: {training_args.world_size}, "
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16 or training_args.bf16}"
)
# Detecting last checkpoint
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# create dataset
tokenizer_class = create_tokenizer(model_args.text_model_name_or_path)
if "opt" in model_args.text_model_name_or_path:
tokenizer_class.padding_side = "left"
image_processor = BlipImageProcessor.from_pretrained(
os.path.join(model_args.model_name_or_path, "processor", "train")
)
text_processor_class = BlipTextProcessor.from_pretrained(
os.path.join(model_args.model_name_or_path, "processor", "train")
)
processor = Blip2Processor(image_processor, text_processor_class, tokenizer_class)
image_processor_eval = BlipImageProcessor.from_pretrained(
os.path.join(model_args.model_name_or_path, "processor", "eval")
)
text_processor_class_eval = BlipTextProcessor.from_pretrained(
os.path.join(model_args.model_name_or_path, "processor", "eval")
)
eval_processor = Blip2Processor(image_processor_eval, text_processor_class_eval, tokenizer_class)
train_dataset = load_dataset(data_args.task_name, splits="train")
eval_dataset = {"test": load_dataset(data_args.task_name, splits="val")}
# create model
blip_collator = BlipCollator(processor)
blip_eval_collator = BlipCollator_VQA(eval_processor, mode="test")
model_args.mp_degree = training_args.tensor_parallel_degree
model_args.gradient_checkpointing = training_args.gradient_checkpointing
model = create_model(model_args, training_args)
logger.info("training_args.use_hybrid_parallel:{}".format(training_args.use_hybrid_parallel))
# create trainer
if training_args.load_model_path is not None:
load_model(training_args, model, ckpt_dir=os.path.join(training_args.load_model_path, "model_state.pdparams"))
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
data_collator=blip_collator,
eval_collator=blip_eval_collator,
processor=processor,
eval_processor=eval_processor,
tokenizer=tokenizer_class,
)
eval_metrics = trainer.evaluate(eval_dataset, task_name="coco_vqa")
trainer.log_metrics("eval", eval_metrics)
def setdistenv(args):
args.sharding_degree = 1 if args.sharding_degree == -1 else args.sharding_degree
args.tensor_parallel_degree = 1 if args.tensor_parallel_degree == -1 else args.tensor_parallel_degree
args.pipeline_parallel_degree = 1 if args.pipeline_parallel_degree == -1 else args.pipeline_parallel_degree
args.sharding_parallel_degree = 1 if args.sharding_parallel_degree == -1 else args.sharding_parallel_degree
if args.tensor_parallel_degree * args.sharding_parallel_degree * args.pipeline_parallel_degree != 1:
args.use_hybrid_parallel = True
args.dp_degree = dist.get_world_size() // (
args.tensor_parallel_degree * args.sharding_parallel_degree * args.pipeline_parallel_degree
)
strategy = fleet.DistributedStrategy()
if args.tensor_parallel_degree > 1:
strategy.tensor_parallel = True
args.data_parallel_degree = args.dp_degree
logger.info("args.dp_degree:{}".format(args.dp_degree))
logger.info("args.sharding_parallel_degree):{}".format(args.sharding_parallel_degree))
strategy.hybrid_configs = {
"dp_degree": args.dp_degree,
"mp_degree": args.tensor_parallel_degree,
"sharding_degree": args.sharding_parallel_degree,
"pp_degree": args.pipeline_parallel_degree,
}
BATCH_SIZE = 128
MICRO_BATCH_SIZE = 32
strategy.pipeline_configs = {
"accumulate_steps": BATCH_SIZE // MICRO_BATCH_SIZE,
"micro_batch_size": MICRO_BATCH_SIZE,
}
strategy.find_unused_parameters = True
# set control in tensor parallel
strategy.tensor_parallel_configs = {"tensor_init_seed": args.seed}
fleet.init(is_collective=True, strategy=strategy)
# if paddle.distributed.get_world_size() > 1:
# paddle.distributed.init_parallel_env()
args.rank = dist.get_rank()
# obtain rank message of hybrid parallel
hcg = fleet.get_hybrid_communicate_group()
args.mp_rank = hcg.get_model_parallel_rank()
args.dp_rank = hcg.get_data_parallel_rank()
args.sharding_rank = hcg.get_sharding_parallel_rank()
args.data_world_rank = args.dp_rank * args.sharding_parallel_degree + args.sharding_rank
args.data_world_size = dist.get_world_size() // abs(args.tensor_parallel_degree * args.pipeline_parallel_degree)
# seed control in hybrid parallel
set_hybrid_parallel_seed(args.seed, args.data_world_rank, args.mp_rank)
def set_hybrid_parallel_seed(basic_seed, data_world_rank, mp_rank, pp_rank=0):
device_id = paddle.device.get_device()
assert "gpu" in device_id
random.seed(basic_seed + data_world_rank)
np.random.seed(basic_seed + data_world_rank)
paddle.seed(basic_seed + data_world_rank)
# TODO add manual_seed
# local_seed/ global_seed is used to control dropout in ModelParallel
local_seed = 1024 + basic_seed + mp_rank * 100 + data_world_rank
global_seed = 2048 + basic_seed + data_world_rank
tracker = get_rng_state_tracker()
tracker.add("global_seed", global_seed)
tracker.add("local_seed", local_seed)
if __name__ == "__main__":
main()