-
Notifications
You must be signed in to change notification settings - Fork 0
/
pretrain.py
executable file
·173 lines (154 loc) · 7 KB
/
pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import paddle
from paddlenlp.trainer import PdArgumentParser, get_last_checkpoint
from paddlenlp.utils.log import logger
from paddlemix.auto import AutoConfigMIX, AutoModelMIX, AutoProcessorMIX
from paddlemix.datasets import MixDataset, MIXTokenMapDataset
from paddlemix.trainer import (
DataArgument,
GenerateArgument,
ModelArgument,
TrainingArguments,
freeze_params,
get_trainer,
)
def main():
# Arguments
parser = PdArgumentParser((GenerateArgument, ModelArgument, DataArgument, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
gen_args, model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
gen_args, model_args, data_args, training_args = parser.parse_args_into_dataclasses()
training_args.print_config(model_args, "Model")
training_args.print_config(data_args, "Data")
training_args.print_config(gen_args, "Generation")
# Setup GPU & distributed training
paddle.set_device(training_args.device)
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, world_size: {training_args.world_size}, "
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16 or training_args.bf16}"
)
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Load model
if training_args.fp16_opt_level == "O2":
if training_args.fp16:
dtype = "float16"
elif training_args.bf16 and paddle.amp.is_bfloat16_supported():
dtype = "bfloat16"
else:
raise ValueError("Please specific dtype: --fp16 or --bf16")
else:
dtype = "float32"
# Load model config
model_config = AutoConfigMIX.from_pretrained(model_args.model_name_or_path, dtype=dtype)
model_config.use_flash_attention = model_args.use_flash_attention
# Load model
model = AutoModelMIX.from_pretrained(
model_args.model_name_or_path,
config=model_config,
dtype=dtype,
)
# Freeze module
if model_args.freeze_include or model_args.freeze_exclude:
freeze_params(model, include=model_args.freeze_include, exclude=model_args.freeze_exclude)
# Load processor
train_processor, tokenizer = AutoProcessorMIX.from_pretrained(
model_args.model_name_or_path,
text_model_name_or_path=model_args.text_model_name_or_path,
train="train",
max_length=data_args.max_length,
version=model_config.version,
image_aspect_ratio=model_config.get("image_aspect_ratio", "square"),
)
if training_args.do_eval:
eval_processor, _ = AutoProcessorMIX.from_pretrained(
model_args.model_name_or_path,
text_model_name_or_path=model_args.text_model_name_or_path,
eval="eval",
max_length=data_args.max_length,
version=model_config.version,
image_aspect_ratio=model_config.get("image_aspect_ratio", "square"),
)
# Load dataset
train_ds = None
eval_ds = None
if data_args.dataset is None:
raise ValueError(f"Please specific dataset config (got {data_args.dataset})")
else:
if "train" in data_args.dataset.keys():
train_ds = MixDataset(data_args.dataset["train"])
if "eval" in data_args.dataset.keys():
eval_ds = MixDataset(data_args.dataset["eval"])
total_samples = len(train_ds) if train_ds is not None else 0
if data_args.mixtoken:
if (
model.base_model_prefix not in ["qwen", "visualglm", "llava"]
and training_args.pipeline_parallel_degree < 1
):
raise NotImplementedError("MIXToke data stream is only implemented for QWen-VL Visualglm llava so far.")
if model.base_model_prefix == "llava":
tokenizer.image_token_span = model.llama.vision_tower.num_patches
logger.info("tokenizer image span: {}".format(tokenizer.image_token_span))
mixtoken_dataset = MIXTokenMapDataset
logger.info("Creating MIXToken Data Stream. This may take a few minutes.")
train_ds = mixtoken_dataset(
train_ds, max_length=data_args.max_length, processor=train_processor, tokenizer=tokenizer
)
# get Trainer
trainer = get_trainer(
pretrained_model_name_or_path=model_args.model_name_or_path,
model=model,
args=training_args,
tokenizer=tokenizer,
train_dataset=train_ds,
eval_dataset=eval_ds,
train_processor=train_processor,
eval_processor=eval_processor if training_args.do_eval else None,
mixtokens=data_args.mixtoken,
)
# Train
if training_args.do_train:
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
if training_args.benchmark:
total_effective_samples = total_samples * training_args.num_train_epochs
effective_samples_per_second = total_effective_samples / train_result.metrics["train_runtime"]
mem_gpu = (
train_result.metrics["train_mem_gpu_peaked_delta"] + train_result.metrics["train_mem_gpu_alloc_delta"]
)
logger.info(f"Effective_samples_per_second: {effective_samples_per_second} ")
logger.info(f"train_mem_gpu_peaked: {int(mem_gpu/ (2**20))} MB")
logger.info("Benchmark done.")
else:
trainer.save_model(merge_tensor_parallel=training_args.tensor_parallel_degree > 1)
trainer.log_metrics("train", train_result.metrics)
trainer.save_metrics("train", train_result.metrics)
trainer.save_state()
if __name__ == "__main__":
main()