-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevaluate_test.py
53 lines (42 loc) · 1.22 KB
/
evaluate_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from collections import Counter
import pandas as pd
import logging
import numpy as np
import torch
import math
from tqdm import trange
from utils.utils import get_device
from utils.old_data_loader import load_data, load_valid_data
logging.basicConfig(level=logging.INFO)
def main():
embeds = np.array([
[3, 2.5, 2, 1.5],
[2, 2, .5, .5],
[5.5, 0, 1.5, 2],
[4.5, 1, .5, .5],
[5.5, -1, .5, 1],
])
embedding_size = 2
eval_data = np.array([
[1, -1, 0], # B < A t
[2, -1, 0], # C < A f
[1, -1, 3], # B < D f
[3, -1, 0], # D < A f
[3, -1, 2], # D < C t
[1, -1, 2], # B < C f
[4, -1, 2], # F < C t
])
offsets = np.abs(embeds[:, embedding_size:])
embeds = embeds[:, :embedding_size]
c_embeds = embeds[eval_data[:, 0]]
c_offsets = offsets[eval_data[:, 0]]
d_embeds = embeds[eval_data[:, 2]]
d_offsets = offsets[eval_data[:, 2]]
euc = np.abs(c_embeds - d_embeds)
results = euc + c_offsets - d_offsets
results = np.clip(results, a_min=0, a_max=None)
results = results.sum(axis=1)
acc = (results == 0).sum().item() / eval_data.shape[0]
print(acc)
if __name__ == '__main__':
main()