-
Notifications
You must be signed in to change notification settings - Fork 0
/
kuposter.tex
219 lines (203 loc) · 11.1 KB
/
kuposter.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
\documentclass[landscape,a0paper,fontscale=0.45]{kuleuvenposter}
%\documentclass[landscape,a1paper,fontscale=0.45]{kuleuvenposter}
%,paperheight=24in,paperwidth=36in%
%,fontscale=0.467
\usepackage{color}
\usepackage{amsmath}
\usepackage{amsthm}
\usepackage{amsfonts}
\usepackage{enumitem}
\usepackage{geometry}
\usepackage{caption}
\usepackage{subfigure}
\usepackage{tikz}
\usetikzlibrary{calc,shapes,backgrounds,fit,arrows.meta,positioning,decorations.pathmorphing}
\usepackage{pgfplots}
\usepackage{mathtools}
\mathtoolsset{showonlyrefs}
\usepackage{csvsimple}
%
\def\stepwidth{7}
\def\stepheight{5}
\def\N{3}
\pgfmathtruncatemacro\Nm{\N-1}
%
\tikzset{encircle/.style={ellipse,minimum width=1.2cm, minimum height=0.7cm, draw=KULeuvenRechtsgeleerdheid,line width=2pt}}
\tikzset{hllabel/.style={KULeuvenRechtsgeleerdheid,font=\fontsize{10}{10}\ttfamily,text width=.5*\stepwidth cm}}
\tikzset{hlnode/.style={KULeuvenRechtsgeleerdheid,font=\fontsize{10}{10}\ttfamily,text width=.5*\stepwidth cm}}
\tikzset{hlline/.style={draw=KULeuvenRechtsgeleerdheid, line width=2pt, shorten >=2pt, shorten <=2pt}}
% For the various arrows to be used
\tikzset{
coarse/.style={KULeuvenBlauw,{Triangle Cap[reversed]}-{Triangle Cap[]},shorten <=5pt,shorten >=5pt,line width=1.2em},
fine/.style={KULeuvenBlauw,{Triangle Cap[reversed]}-{Triangle Cap[]},shorten <=5pt,shorten >=5pt,line width=1.2em},
noisy/.style={KULeuvenBlauw,{Triangle Cap[reversed]}-{Triangle Cap[]},shorten <=5pt,shorten >=5pt,line width=1.2em},
restriction/.style={KULeuvenLichtblauw,{Triangle Cap[cap angle=120, reversed]}-{Triangle Cap[cap angle=120]},shorten <=5pt,shorten >=2pt,line width=1.2em},
matchingfrommicro/.style={KULeuvenLichtblauw,{Triangle Cap[cap angle=120, reversed]}-{Butt Cap},shorten <=2pt,line width=.4em},
matchingfrommacro/.style={KULeuvenLichtblauw,{Triangle Cap[cap angle=120, reversed]}-{Butt Cap},shorten <=0pt,line width=.8em},
matching/.style={KULeuvenLichtblauw,-{Triangle Cap[cap angle=120]},shorten >=2pt,line width=1.2em},
microcopy/.style={black!5,-,shorten >=2pt,shorten <=2pt,line width=.4em},
macrocopy/.style={KULeuvenLichtblauw,-,shorten >=2pt,shorten <=2pt,line width=.8em}
}
%
\makeatletter
\g@addto@macro\normalsize{%
\setlength\abovedisplayskip{5pt}
\setlength\belowdisplayskip{3pt}
\setlength\abovedisplayshortskip{0pt}
\setlength\belowdisplayshortskip{0pt}
}
\makeatother
\newcommand{\dd}{\,\mathrm{d}}
\newcommand{\half}{\frac{1}{2}}
\newcommand\eff{\mbox{eff}}
\setlength{\columnsep}{0.7em}
\setlength{\columnseprule}{0mm}
%\setlength{\parskip}{0pt}
\begin{document}
\begin{poster}{columns=4,Faculteit=Ingenieurswetenschappen} %Bioingenieurswetenschappen}
{ % the formatting is done here, as the desired font size will depend on the title length
\spaceskip=1\fontdimen2\font plus 1\fontdimen3\font minus \fontdimen4\font % Make larger spaced in the title
\Huge\bfseries Parareal computation of SDEs with time-scale separation
}
{ % Names (and subtitle) go(es) here
Fr\'ed\'eric Legoll\textsuperscript{1},Tony Leli\`evre\textsuperscript{1}, \underline{Keith Myerscough}\textsuperscript{2} and Giovanni Samaey\textsuperscript{2}\\
{\footnotesize \textsuperscript{1}Ecole des Ponts ParisTech, \textsuperscript{2}KU Leuven}}
{ % Personal images (photo/QR code to website
\includegraphics[width=\footerheight]{specific/qrcode}%
\includegraphics[width=\footerheight]{specific/photo.jpg}
}
{ % Personal details
Keith Myerscough\\{\texttt [email protected]}\\people.cs.kuleuven.be/\~{}keith.myerscough/
}
{% Text to state association
In association with:%
}
{% Logo's of associated institutes/universities/companies/funding etc.
\includegraphics[height=.8\footerheight]{specific/logo_EcolePonts} %
}
{ % Department name
Department of Computer Science%
}
{ % Department logo
\includegraphics[height=\footerheight]{images/logo_CS}%
}
%
\begin{posterbox}%
[name=micro-macro modelling, column=0, row=0, boxColorOne=KULeuvenFaculteit!15!white, borderColor=KULeuvenFaculteit]%
%[name=micro-macro modelling, column=0, row=0, boxColorOne=KULeuvenFaculteit!15!white, textborder=open, borderColor=KULeuvenFaculteit, headerColorOne=KULeuvenFaculteit, headerborder=open, headerBorderColor=KULeuvenFaculteit, headerFontColor=white]%
%{Micro-macro modelling}%
{In a nutshell}%
%\begin{noindentitemize}
%\item The microscopic system is governed by known equations of motion, which we consider `exact'
%\item From the microscopic state we can extract macroscopic quantities
%\item We assume we have some (possibly inaccurate) model for the evolution of the macroscopic variables
%\item Observables of interest are defined as functions of the macroscopic state
%\end{noindentitemize}
\begin{description}
\item[Goal] Simulate slow-fast SDEs over long time, quickly
\item[Model] Slow-fast system of SDEs, and a macroscopic model taken from the ``fast'' limit
\item[Method] Parallel-in-time algorithm that iteratively improves the macroscopic result
\item[Result] Reduction in wall clock time
\item[Bonus] Lower variance than full microscopic model
\end{description}
\end{posterbox}
\begin{posterbox}[name=microscopic, column=0,below=micro-macro modelling]{Microscopic model}
\begin{noindentitemize}
%\item We study as the microscopic system a slow-fast system of coupled SDEs
\item Slow-fast system of coupled SDEs
\begin{align}
\dd X &= (-X_t^3 + X_t + Y_t^2) \dd t + \sqrt{\frac{2}{\beta}} \dd B_t^{(x)} \label{eq:xParisdyn}\\
\dd Y &= \frac{1}{\epsilon}(X_t - Y_t) \dd t + \sqrt{\frac{2}{\beta\epsilon}} \dd B_t^{(y)}. \label{eq:yParisdyn}
\end{align}
%
%\item Modeled as an ensemble $\mathcal{X}_t = \lbrace X_t^p,Y_t^p,W_t^p \rbrace_{p=1}^P$ of particles with weight $W^p$
\item Modeled as an ensemble $\mathcal{X}_t$ of particles with positions ($X_t^p$, $Y_t^p$) and weight $W^p$
\item Time integrator: a Lie-Trotter splitting, updating $X_t$ first, then $Y_t$
\item Validation: \emph{deterministic} solution given by the Fokker-Planck equation, akin to the macroscopic model
\end{noindentitemize}
\end{posterbox}
\begin{posterbox}%
[name=parareal micro-macro, column=1, above=bottom, boxColorOne=KULeuvenFaculteit!15!white, borderColor=KULeuvenFaculteit]%
{The parareal algorithm}
%\begin{noindentitemize}
%\item The parareal algorith iteratively improves the macroscopic propagator, by computing the discrepancies between the macroscopic and the microscopic models \emph{in parallel}
%\item By employing the microscopic propagator only in parallel, there is a reduction in \emph{wall clock time} if there are fewer iterations needed than time steps
%\item The error is dominated by variance (see figures $\rightarrow$)%the variance due to the stochastic nature of the microscopic propagator
%\item This variance is greatly reduced by using a particle propagator with {\color{KULeuvenSecundair}correlated noise} for the macroscopic model in computing the discrepancies between the models
%\end{noindentitemize}
\begin{description}
\item[Iteratively improves] the macroscopic propagator by computing the discrepancies between the {\color{KULeuvenBlauw}macroscopic} and the {\color{KULeuvenFaculteit}microscopic} models \emph{in parallel}
\item[Parallel] use of the microscopic propagator gives a reduction in \emph{wall clock time} if there are fewer iterations needed than time steps
\item[Variance] of the stochastic microscopic propagator dominates the error (see figures $\rightarrow$)%the variance due to the stochastic nature of the microscopic propagator
\item[Reduction in variance] by using a particle propagator with {\color{KULeuvenSecundair}correlated noise} for the macroscopic model in computing the discrepancies between the models
\end{description}
\input{specific/sketch}
\end{posterbox}
\begin{posterbox}[name=macroscopic, column=0,below=microscopic, above=bottom]{Macroscopic model}
%\begin{posterbox}[name=macroscopic, column=1,row=0, above=parareal micro-macro]{Macroscopic model}
\begin{noindentitemize}
%\item \emph{assume} $\epsilon \rightarrow 0$, then $X_t$ ``feels'' only the conditional distribution of $Y_t$, a Gaussian centred at $X_t$ with variance $\frac{1}{\beta}$.
\item Only slow variable, \emph{assume} the fast $Y_t$ is equilibrated and use only the expected value of the term $Y_t^2$
\begin{align}
\dd Z &= (-Z_t^3 + Z_t + Z_t^2 + \frac{1}{\beta}) \dd t + \sqrt{\frac{2}{\beta}} \dd B^{(x)}, \label{eq:zParisdyn}
\end{align}
or in potential form
\begin{align}
\dd Z &= -\partial_z V_{\eff} (Z_t) \dd t + \sqrt{\frac{2}{\beta}} \dd B^{(x)}. \label{eq:zParisdyn_pot}
\end{align}
%
\item The associated Fokker-Planck equation reads
\begin{equation}
\partial_t \rho(z) = \partial_z \left( \rho(z) \partial_z V_{\eff} \right) + \frac{1}{\beta} \partial_{zz} \rho(z).
\end{equation}
\item The macroscopic state is represented by integral quantities over a regular grid
%\begin{equation}
%\rho_i = \int_{x_i}^{x_{i+1}} \rho(z) \dd z,
%\end{equation}
%where the $x_i$ form an evenly spaced grid
\end{noindentitemize}
\end{posterbox}
%\begin{posterbox}[name=coupling,column=0,below=notset, above=bottom]{Coupling}
\begin{posterbox}[name=macroscopic, column=1,row=0, above=parareal micro-macro]{Coupling}
\begin{description}
\item[Restriction]($\mathcal{R}$, from micro to macro) sum the weights of all particles in each bin
%\begin{equation}
%%\rho_i = \sum_{\mbox{all particles $p$ in bin $i$}} W^p
%\rho_i = \sum_{\mbox{\footnotesize all particles $p$ in bin $i$}} W^p
%\end{equation}
\item[Matching]($\mathcal{M}$, from macro to micro) reweight particles from a known microstate $(\bar{X}^p, \bar{Y}^p, \bar{W}^p)$
%\begin{equation}
%%W^p = \bar{W}^p \frac{\rho_i}{\bar{\rho}_i} \mbox{ for } {\lbrace p: x_i \leq X_t^p < x_{i+1} \rbrace} \mbox{ for } i=0,1,\ldots,N-1
%W^p = \bar{W}^p \frac{\rho_i}{\bar{\rho}_i}\quad \mbox{\footnotesize for all particles $p$ in bin $i$}
%\end{equation}
\item[Resampling]($\mathcal{M}^*$, optional) retrieve an ensemble with all particles equal in weight
\end{description}
\end{posterbox}
\begin{posterbox}[name=convergenceK, column=2, below=notset, above=bottom, borderColor=KULeuvenFaculteit]{Convergence in iterations}%the number of iterations}
\begin{tikzpicture}
\node (inK) {
\includegraphics[width=\textwidth]{specific/inK}
};
\node [hlnode, anchor=south west] (inKlabel) at ($(inK.south west)!.1!(inK.north east)$) {Iteration converges in a few steps, need only K/N of serial wall clock time};
\end{tikzpicture}
\end{posterbox}
\begin{posterbox}[name=convergenceP, column=3, below=notset, above=bottom, borderColor=KULeuvenFaculteit]{Convergence in number of particles}%the number of particles}
\begin{tikzpicture}
\node (invalue) {
\includegraphics[width=\textwidth]{specific/invalue}
};
\end{tikzpicture}
\end{posterbox}
\begin{posterbox}[name=diagram, column=2, row=0, span=2, textborder=none, headerColorOne=white, headerborder=none]{}
Parameters used below: $\beta=5, \epsilon=0.1, K=N=20, \Delta t = 0.025, \delta t=1.0\times 10^{-4}$
\end{posterbox}
%\begin{posterbox}[name=parameters, column=2, below=notset, above=convergenceK, span=2, textborder=none, headerColorOne=white, headerborder=none]{}
%Parameters used below: $\beta=5, \epsilon=1,N=20,\Delta t = 0.025, \delta t=1.0\times 10^{-4}$
%\end{posterbox}
%
\end{poster}
\end{document}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: t
%%% End: