-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathscorer.py
81 lines (69 loc) · 3.1 KB
/
scorer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import torch
import torch.nn as nn
from utils import try_cuda
from speaker import batch_observations_and_actions
import numpy as np
class Scorer:
def __init__(self):
self.scorer = scorer
self.text_encoder = encoder
self.traj_encoder = None
self.sm = try_cuda(nn.Softmax(dim=1))
self.gamma = 0.0 # how much follower_logit to consider
def init_traj(self, batch_size):
return self.encoder.init_state(batch_size)
def encode_traj(self, cand_obs, cand_acs):
assert len(cand_obs) == len(cand_acs)
batch_size = len(cand_obs)
start_obs, batched_image_features, batched_action_embeddings, path_mask, \
path_lengths, _, _ = \
batch_observations_and_actions(
cand_obs, cand_acs, None) # no permutation
ctx,_,_ = self.encoder(batched_action_embeddings, batched_image_features)
path_lengths = np.array(path_lengths) - 1
h_t = ctx[np.arange(batch_size),path_lengths]
return h_t
def score(self, instr_enc, traj_enc):
return self.scorer(instr_enc, traj_enc.unsqueeze(1)).squeeze(1)
def prepare_proposals(self,batch_h,batch_c,batch_obs,batch_acs):
''' for each action proposal, prepare its h,c
input: existing traj h,c; observation; actions
output: proposed (h,c) * [batch_size, max_proposal_size]
'''
batch_size, ac_size, _ = batch_acs.size()
hidden_size = self.encoder.hidden_size
proposal_h = try_cuda(torch.zeros(batch_size,ac_size,hidden_size))
proposal_c = try_cuda(torch.zeros(batch_size,ac_size,hidden_size))
for i in range(batch_size):
h = batch_h[i].expand(ac_size,-1)
c = batch_c[i].expand(ac_size,-1)
obs = batch_obs[i].expand(ac_size,-1,-1)
proposal_h[i], proposal_c[i] = self.encoder._forward_one_step(h,c,batch_acs[i],obs)
return proposal_h.detach(), proposal_c.detach()
def combine_logit(self, scorer_logit, follower_logit):
#import pdb;pdb.set_trace()
if self.gamma == 0.0:
return scorer_logit
if self.gamma == 1.0:
return follower_logit
g, h = self.gamma, 1-self.gamma
prob = h * self.sm(scorer_logit) + g * self.sm(follower_logit)
return try_cuda(torch.log(prob))
def modules(self):
return [self.encoder, self.scorer]
def modules_path(self, path):
return (path + '_scorer_enc',
path + '_scorer_' + self.scorer.__class__.__name__)
def save(self, path):
''' Snapshot models '''
enc_path, s_path = self.modules_path(path)
torch.save(self.encoder.state_dict(), enc_path)
torch.save(self.scorer.state_dict(), s_path)
def load(self, path):
''' Snapshot models '''
enc_path, s_path = self.modules_path(path)
self.encoder.load_state_dict(torch.load(enc_path))
self.scorer.load_state_dict(torch.load(s_path))
def load_traj_encoder(self, base_path, **kwargs):
encoder_path = base_path + '_enc'
self.encoder.load_state_dict(torch.load(encoder_path, **kwargs))