forked from eveningdong/DeepLabV3-Tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval_voc12.py
123 lines (98 loc) · 4.25 KB
/
eval_voc12.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import sys
import argparse
import numpy as np
import tensorflow as tf
import time
from config import *
from datetime import datetime
from libs.datasets.dataset_factory import read_data
from libs.datasets.VOC12 import decode_labels, inv_preprocess, prepare_label
from libs.nets import deeplabv3
slim = tf.contrib.slim
streaming_mean_iou = tf.contrib.metrics.streaming_mean_iou
def save(saver, sess, logdir, step):
'''Save weights.
Args:
saver: TensorFlow Saver object.
sess: TensorFlow session.
logdir: path to the snapshots directory.
step: current training step.
'''
model_name = 'model.ckpt'
checkpoint_path = os.path.join(logdir, model_name)
if not os.path.exists(logdir):
os.makedirs(logdir)
saver.save(sess, checkpoint_path, global_step=step)
print('The checkpoint has been created.')
def load(saver, sess, ckpt_dir):
'''Load trained weights.
Args:
saver: TensorFlow Saver object.
sess: TensorFlow session.
ckpt_path: path to checkpoint file with parameters.
'''
if args.ckpt == 0:
ckpt = tf.train.get_checkpoint_state(ckpt_dir)
ckpt_path = ckpt.model_checkpoint_path
else:
ckpt_path = ckpt_dir+'/model.ckpt-%i' % args.ckpt
saver.restore(sess, ckpt_path)
print("Restored model parameters from {}".format(ckpt_path))
def main():
"""Create the model and start the training."""
tf.set_random_seed(args.random_seed)
# Create queue coordinator.
coord = tf.train.Coordinator()
image_batch, label_batch = read_data(is_training=args.is_training)
# Create network.
net, end_points = deeplabv3(image_batch,
num_classes=args.num_classes,
depth=args.num_layers,
is_training=False)
# For a small batch size, it is better to keep
# the statistics of the BN layers (running means and variances)
# frozen, and to not update the values provided by the pre-trained model.
# If is_training=True, the statistics will be updated during the training.
# Note that is_training=False still updates BN parameters gamma (scale) and beta (offset)
# if they are presented in var_list of the optimiser definition.
# Which variables to load. Running means and variances are not trainable,
# thus all_variables() should be restored.
restore_var = [v for v in tf.global_variables() if 'fc' not in v.name or not args.not_restore_last]
# Predictions.
raw_output = end_points['resnet{}/logits'.format(args.num_layers)]
# Predictions: ignoring all predictions with labels greater or equal than n_classes
nh, nw = tf.shape(image_batch)[1], tf.shape(image_batch)[2]
seg_logits = tf.image.resize_bilinear(raw_output, [nh, nw])
seg_pred = tf.argmax(seg_logits, axis=3)
seg_pred = tf.expand_dims(seg_pred, 3)
seg_pred = tf.reshape(seg_pred, [-1,])
seg_gt = tf.cast(label_batch, tf.int32)
seg_gt = tf.reshape(seg_gt, [-1,])
mask = seg_gt <= args.num_classes - 1
seg_pred = tf.boolean_mask(seg_pred, mask)
seg_gt = tf.boolean_mask(seg_gt, mask)
mean_iou, update_mean_iou = streaming_mean_iou(seg_pred, seg_gt, num_classes=args.num_classes)
# Set up tf session and initialize variables.
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
# Load variables if the checkpoint is provided.
if args.ckpt > 0 or args.restore_from is not None:
loader = tf.train.Saver(var_list=restore_var)
load(loader, sess, args.snapshot_dir)
# Start queue threads.
threads = tf.train.start_queue_runners(coord=coord, sess=sess)
tf.get_default_graph().finalize()
for step in range(1449):
start_time = time.time()
mean_iou_float, _ = sess.run([mean_iou, update_mean_iou])
duration = time.time() - start_time
sys.stdout.write('step {:d}, mean_iou: {:.6f}({:.3f} sec/step)\n'.format(step, mean_iou_float, duration))
sys.stdout.flush()
if coord.should_stop():
coord.request_stop()
coord.join(threads)
if __name__ == '__main__':
main()