forked from run-llama/LlamaIndexTS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMixedbreadAIEmbeddings.ts
178 lines (163 loc) · 5.4 KB
/
MixedbreadAIEmbeddings.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import { BaseEmbedding, type EmbeddingInfo } from "@llamaindex/core/embeddings";
import { getEnv } from "@llamaindex/env";
import { MixedbreadAI, MixedbreadAIClient } from "@mixedbread-ai/sdk";
type EmbeddingsRequestWithoutInput = Omit<
MixedbreadAI.EmbeddingsRequest,
"input"
>;
/**
* Interface extending EmbeddingsParams with additional
* parameters specific to the MixedbreadAIEmbeddings class.
*/
export interface MixedbreadAIEmbeddingsParams
extends Omit<EmbeddingsRequestWithoutInput, "model"> {
/**
* The model to use for generating embeddings.
* @default {"mixedbread-ai/mxbai-embed-large-v1"}
*/
model?: string;
/**
* The API key to use.
* @default {process.env.MXBAI_API_KEY}
*/
apiKey?: string;
/**
* The base URL for the API.
*/
baseUrl?: string;
/**
* The maximum number of documents to embed in a single request.
* @default {128}
*/
embedBatchSize?: number;
/**
* The embed info for the model.
*/
embedInfo?: EmbeddingInfo;
/**
* The maximum number of retries to attempt.
* @default {3}
*/
maxRetries?: number;
/**
* Timeouts for the request.
*/
timeoutInSeconds?: number;
}
/**
* Class for generating embeddings using the mixedbread ai API.
*
* This class leverages the model "mixedbread-ai/mxbai-embed-large-v1" to generate
* embeddings for text documents. The embeddings can be used for various NLP tasks
* such as similarity comparison, clustering, or as features in machine learning models.
*
* @example
* const mxbai = new MixedbreadAIEmbeddings({ apiKey: 'your-api-key' });
* const texts = ["Baking bread is fun", "I love baking"];
* const result = await mxbai.getTextEmbeddings(texts);
* console.log(result);
*
* @example
* const mxbai = new MixedbreadAIEmbeddings({
* apiKey: 'your-api-key',
* model: 'mixedbread-ai/mxbai-embed-large-v1',
* encodingFormat: MixedbreadAI.EncodingFormat.Binary,
* dimensions: 512,
* normalized: true,
* });
* const query = "Represent this sentence for searching relevant passages: Is baking bread fun?";
* const result = await mxbai.getTextEmbedding(query);
* console.log(result);
*/
export class MixedbreadAIEmbeddings extends BaseEmbedding {
requestParams: EmbeddingsRequestWithoutInput;
requestOptions: MixedbreadAIClient.RequestOptions;
private client: MixedbreadAIClient;
/**
* Constructor for MixedbreadAIEmbeddings.
* @param {Partial<MixedbreadAIEmbeddingsParams>} params - An optional object with properties to configure the instance.
* @throws {Error} If the API key is not provided or found in the environment variables.
* @throws {Error} If the batch size exceeds 256.
*/
constructor(params?: Partial<MixedbreadAIEmbeddingsParams>) {
super();
const apiKey = params?.apiKey ?? getEnv("MXBAI_API_KEY");
if (!apiKey) {
throw new Error(
"mixedbread ai API key not found. Either provide it in the constructor or set the 'MXBAI_API_KEY' environment variable.",
);
}
if (params?.embedBatchSize && params?.embedBatchSize > 256) {
throw new Error(
"The maximum batch size for mixedbread ai embeddings API is 256.",
);
}
this.embedBatchSize = params?.embedBatchSize ?? 128;
if (params?.embedInfo) {
this.embedInfo = params?.embedInfo;
}
this.requestParams = <EmbeddingsRequestWithoutInput>{
model: params?.model ?? "mixedbread-ai/mxbai-embed-large-v1",
normalized: params?.normalized,
dimensions: params?.dimensions,
encodingFormat: params?.encodingFormat,
truncationStrategy: params?.truncationStrategy,
prompt: params?.prompt,
};
this.requestOptions = {
timeoutInSeconds: params?.timeoutInSeconds,
maxRetries: params?.maxRetries ?? 3,
// Support for this already exists in the python sdk and will be added to the js sdk soon
// @ts-expect-error fixme
additionalHeaders: {
"user-agent": "@mixedbread-ai/llamaindex-ts-sdk",
},
};
this.client = new MixedbreadAIClient(
params?.baseUrl
? {
apiKey,
environment: params?.baseUrl,
}
: {
apiKey,
},
);
}
/**
* Generates an embedding for a single text.
* @param {string} text - A string to generate an embedding for.
* @returns {Promise<number[]>} A Promise that resolves to an array of numbers representing the embedding.
*
* @example
* const query = "Represent this sentence for searching relevant passages: Is baking bread fun?";
* const result = await mxbai.getTextEmbedding(text);
* console.log(result);
*/
async getTextEmbedding(text: string): Promise<number[]> {
return (await this.getTextEmbeddings([text]))[0]!;
}
/**
* Generates embeddings for an array of texts.
* @param {string[]} texts - An array of strings to generate embeddings for.
* @returns {Promise<Array<number[]>>} A Promise that resolves to an array of embeddings.
*
* @example
* const texts = ["Baking bread is fun", "I love baking"];
* const result = await mxbai.getTextEmbeddings(texts);
* console.log(result);
*/
getTextEmbeddings = async (texts: string[]): Promise<Array<number[]>> => {
if (texts.length === 0) {
return [];
}
const response = await this.client.embeddings(
{
...this.requestParams,
input: texts,
},
this.requestOptions,
);
return response.data.map((d) => d.embedding as number[]);
};
}