forked from eriklindernoren/PyTorch-GAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
context_encoder.py
179 lines (142 loc) · 6.31 KB
/
context_encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
"""
Inpainting using Generative Adversarial Networks.
The dataset can be downloaded from: https://www.dropbox.com/sh/8oqt9vytwxb3s4r/AADIKlz8PR9zr6Y20qbkunrba/Img/img_align_celeba.zip?dl=0
(if not available there see if options are listed at http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html)
Instrustion on running the script:
1. Download the dataset from the provided link
2. Save the folder 'img_align_celeba' to '../../data/'
4. Run the sript using command 'python3 context_encoder.py'
"""
import argparse
import os
import numpy as np
import math
import torchvision.transforms as transforms
from torchvision.utils import save_image
from PIL import Image
from torch.utils.data import DataLoader
from torchvision import datasets
from torch.autograd import Variable
from datasets import *
from models import *
import torch.nn as nn
import torch.nn.functional as F
import torch
os.makedirs("images", exist_ok=True)
parser = argparse.ArgumentParser()
parser.add_argument("--n_epochs", type=int, default=200, help="number of epochs of training")
parser.add_argument("--batch_size", type=int, default=8, help="size of the batches")
parser.add_argument("--dataset_name", type=str, default="img_align_celeba", help="name of the dataset")
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--n_cpu", type=int, default=4, help="number of cpu threads to use during batch generation")
parser.add_argument("--latent_dim", type=int, default=100, help="dimensionality of the latent space")
parser.add_argument("--img_size", type=int, default=128, help="size of each image dimension")
parser.add_argument("--mask_size", type=int, default=64, help="size of random mask")
parser.add_argument("--channels", type=int, default=3, help="number of image channels")
parser.add_argument("--sample_interval", type=int, default=500, help="interval between image sampling")
opt = parser.parse_args()
print(opt)
cuda = True if torch.cuda.is_available() else False
# Calculate output of image discriminator (PatchGAN)
patch_h, patch_w = int(opt.mask_size / 2 ** 3), int(opt.mask_size / 2 ** 3)
patch = (1, patch_h, patch_w)
def weights_init_normal(m):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
torch.nn.init.normal_(m.weight.data, 0.0, 0.02)
elif classname.find("BatchNorm2d") != -1:
torch.nn.init.normal_(m.weight.data, 1.0, 0.02)
torch.nn.init.constant_(m.bias.data, 0.0)
# Loss function
adversarial_loss = torch.nn.MSELoss()
pixelwise_loss = torch.nn.L1Loss()
# Initialize generator and discriminator
generator = Generator(channels=opt.channels)
discriminator = Discriminator(channels=opt.channels)
if cuda:
generator.cuda()
discriminator.cuda()
adversarial_loss.cuda()
pixelwise_loss.cuda()
# Initialize weights
generator.apply(weights_init_normal)
discriminator.apply(weights_init_normal)
# Dataset loader
transforms_ = [
transforms.Resize((opt.img_size, opt.img_size), Image.BICUBIC),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]
dataloader = DataLoader(
ImageDataset("../../data/%s" % opt.dataset_name, transforms_=transforms_),
batch_size=opt.batch_size,
shuffle=True,
num_workers=opt.n_cpu,
)
test_dataloader = DataLoader(
ImageDataset("../../data/%s" % opt.dataset_name, transforms_=transforms_, mode="val"),
batch_size=12,
shuffle=True,
num_workers=1,
)
# Optimizers
optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
def save_sample(batches_done):
samples, masked_samples, i = next(iter(test_dataloader))
samples = Variable(samples.type(Tensor))
masked_samples = Variable(masked_samples.type(Tensor))
i = i[0].item() # Upper-left coordinate of mask
# Generate inpainted image
gen_mask = generator(masked_samples)
filled_samples = masked_samples.clone()
filled_samples[:, :, i : i + opt.mask_size, i : i + opt.mask_size] = gen_mask
# Save sample
sample = torch.cat((masked_samples.data, filled_samples.data, samples.data), -2)
save_image(sample, "images/%d.png" % batches_done, nrow=6, normalize=True)
# ----------
# Training
# ----------
for epoch in range(opt.n_epochs):
for i, (imgs, masked_imgs, masked_parts) in enumerate(dataloader):
# Adversarial ground truths
valid = Variable(Tensor(imgs.shape[0], *patch).fill_(1.0), requires_grad=False)
fake = Variable(Tensor(imgs.shape[0], *patch).fill_(0.0), requires_grad=False)
# Configure input
imgs = Variable(imgs.type(Tensor))
masked_imgs = Variable(masked_imgs.type(Tensor))
masked_parts = Variable(masked_parts.type(Tensor))
# -----------------
# Train Generator
# -----------------
optimizer_G.zero_grad()
# Generate a batch of images
gen_parts = generator(masked_imgs)
# Adversarial and pixelwise loss
g_adv = adversarial_loss(discriminator(gen_parts), valid)
g_pixel = pixelwise_loss(gen_parts, masked_parts)
# Total loss
g_loss = 0.001 * g_adv + 0.999 * g_pixel
g_loss.backward()
optimizer_G.step()
# ---------------------
# Train Discriminator
# ---------------------
optimizer_D.zero_grad()
# Measure discriminator's ability to classify real from generated samples
real_loss = adversarial_loss(discriminator(masked_parts), valid)
fake_loss = adversarial_loss(discriminator(gen_parts.detach()), fake)
d_loss = 0.5 * (real_loss + fake_loss)
d_loss.backward()
optimizer_D.step()
print(
"[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G adv: %f, pixel: %f]"
% (epoch, opt.n_epochs, i, len(dataloader), d_loss.item(), g_adv.item(), g_pixel.item())
)
# Generate sample at sample interval
batches_done = epoch * len(dataloader) + i
if batches_done % opt.sample_interval == 0:
save_sample(batches_done)