forked from kangjianwei/LearningJDK
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPipelineHelper.java
208 lines (195 loc) · 9.52 KB
/
PipelineHelper.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
/*
* Copyright (c) 2012, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package java.util.stream;
import java.util.Spliterator;
import java.util.function.IntFunction;
/**
* Helper class for executing <a href="package-summary.html#StreamOps">
* stream pipelines</a>, capturing all of the information about a stream
* pipeline (output shape, intermediate operations, stream flags, parallelism,
* etc) in one place.
*
* <p>
* A {@code PipelineHelper} describes the initial segment of a stream pipeline,
* including its source, intermediate operations, and may additionally
* incorporate information about the terminal (or stateful) operation which
* follows the last intermediate operation described by this
* {@code PipelineHelper}. The {@code PipelineHelper} is passed to the
* {@link TerminalOp#evaluateParallel(PipelineHelper, java.util.Spliterator)},
* {@link TerminalOp#evaluateSequential(PipelineHelper, java.util.Spliterator)},
* and {@link AbstractPipeline#opEvaluateParallel(PipelineHelper, java.util.Spliterator,
* java.util.function.IntFunction)}, methods, which can use the
* {@code PipelineHelper} to access information about the pipeline such as
* head shape, stream flags, and size, and use the helper methods
* such as {@link #wrapAndCopyInto(Sink, Spliterator)},
* {@link #copyInto(Sink, Spliterator)}, and {@link #wrapSink(Sink)} to execute
* pipeline operations.
*
* @param <P_OUT> type of output elements from the pipeline
* @since 1.8
*/
// 定义了一组接口方法,这些方法用来串接流的各个阶段,并完成数据择取
abstract class PipelineHelper<P_OUT> {
/**
* Gets the stream shape for the source of the pipeline segment.
*
* @return the stream shape for the source of the pipeline segment.
*/
// 获取流的源头阶段的形状
abstract StreamShape getSourceShape();
/**
* Gets the combined stream and operation flags for the output of the described
* pipeline. This will incorporate stream flags from the stream source, all
* the intermediate operations and the terminal operation.
*
* @return the combined stream and operation flags
* @see StreamOpFlag
*/
// 返回流的组合操作标志
abstract int getStreamAndOpFlags();
/**
* Returns the exact output size of the portion of the output resulting from
* applying the pipeline stages described by this {@code PipelineHelper} to
* the portion of the input described by the provided
* {@code Spliterator}, if known. If not known or known infinite, will
* return {@code -1}.
*
* @apiNote
* The exact output size is known if the {@code Spliterator} has the
* {@code SIZED} characteristic, and the operation flags
* {@link StreamOpFlag#SIZED} is known on the combined stream and operation
* flags.
*
* @param spliterator the spliterator describing the relevant portion of the
* source data
* @return the exact size if known, or -1 if infinite or unknown
*/
// 返回输出的元素数量,如果未知或无穷,则返回-1
abstract<P_IN> long exactOutputSizeIfKnown(Spliterator<P_IN> spliterator);
/**
* Applies the pipeline stages described by this {@code PipelineHelper} to
* the provided {@code Spliterator} and send the results to the provided
* {@code Sink}.
*
* @implSpec
* The implementation behaves as if:
* <pre>{@code
* copyInto(wrapSink(sink), spliterator);
* }</pre>
*
* @param sink the {@code Sink} to receive the results
* @param spliterator the spliterator describing the source input to process
*/
// 从后往前包装sink的同时,从前到后择取数据
abstract<P_IN, S extends Sink<P_OUT>> S wrapAndCopyInto(S sink, Spliterator<P_IN> spliterator);
/**
* Takes a {@code Sink} that accepts elements of the output type of the
* {@code PipelineHelper}, and wrap it with a {@code Sink} that accepts
* elements of the input type and implements all the intermediate operations
* described by this {@code PipelineHelper}, delivering the result into the
* provided {@code Sink}.
*
* @param sink the {@code Sink} to receive the results
*
* @return a {@code Sink} that implements the pipeline stages and sends
* results to the provided {@code Sink}
*/
// 从终端的Sink开始,逐段向前包装Sink形成一个单链表,然后将最靠前的sink返回
abstract <P_IN> Sink<P_IN> wrapSink(Sink<P_OUT> sink);
/**
* Pushes elements obtained from the {@code Spliterator} into the provided
* {@code Sink}. If the stream pipeline is known to have short-circuiting
* stages in it (see {@link StreamOpFlag#SHORT_CIRCUIT}), the
* {@link Sink#cancellationRequested()} is checked after each
* element, stopping if cancellation is requested.
*
* @implSpec
* This method conforms to the {@code Sink} protocol of calling
* {@code Sink.begin} before pushing elements, via {@code Sink.accept}, and
* calling {@code Sink.end} after all elements have been pushed.
*
* @param wrappedSink the destination {@code Sink}
* @param spliterator the source {@code Spliterator}
*/
// 从HEAD阶段之后开始择取数据
abstract<P_IN> void copyInto(Sink<P_IN> wrappedSink, Spliterator<P_IN> spliterator);
/**
* Pushes elements obtained from the {@code Spliterator} into the provided
* {@code Sink}, checking {@link Sink#cancellationRequested()} after each
* element, and stopping if cancellation is requested.
*
* @implSpec
* This method conforms to the {@code Sink} protocol of calling
* {@code Sink.begin} before pushing elements, via {@code Sink.accept}, and
* calling {@code Sink.end} after all elements have been pushed or if
* cancellation is requested.
*
* @param wrappedSink the destination {@code Sink}
* @param spliterator the source {@code Spliterator}
* @return true if the cancellation was requested
*/
// 从HEAD阶段之后开始择取数据,存在短路操作(即满足某种条件就终止择取)
abstract <P_IN> boolean copyIntoWithCancel(Sink<P_IN> wrappedSink, Spliterator<P_IN> spliterator);
/**
* Constructs a @{link Node.Builder} compatible with the output shape of
* this {@code PipelineHelper}.
*
* @param exactSizeIfKnown if >=0 then a builder will be created that has a
* fixed capacity of exactly sizeIfKnown elements; if < 0 then the
* builder has variable capacity. A fixed capacity builder will fail
* if an element is added after the builder has reached capacity.
* @param generator a factory function for array instances
*
* @return a {@code Node.Builder} compatible with the output shape of this
* {@code PipelineHelper}
*/
// 返回第(3)、(4)类Node(固定长度Node和可变长度Node)
abstract Node.Builder<P_OUT> makeNodeBuilder(long exactSizeIfKnown, IntFunction<P_OUT[]> generator);
/**
* Collects all output elements resulting from applying the pipeline stages
* to the source {@code Spliterator} into a {@code Node}.
*
* @param spliterator the source {@code Spliterator}
* @param flatten if true and the pipeline is a parallel pipeline then the
* {@code Node} returned will contain no children, otherwise the
* {@code Node} may represent the root in a tree that reflects the
* shape of the computation tree.
* @param generator a factory function for array instances
*
* @return the {@code Node} containing all output elements
*
* @implNote If the pipeline has no intermediate operations and the source is backed
* by a {@code Node} then that {@code Node} will be returned (or flattened
* and then returned). This reduces copying for a pipeline consisting of a
* stateful operation followed by a terminal operation that returns an
* array, such as:
* <pre>{@code
* stream.sorted().toArray();
* }</pre>
*/
// 利用Sink链中定义的操作择取数据
abstract <P_IN> Node<P_OUT> evaluate(Spliterator<P_IN> spliterator, boolean flatten, IntFunction<P_OUT[]> generator);
abstract <P_IN> Spliterator<P_OUT> wrapSpliterator(Spliterator<P_IN> spliterator);
}