Skip to content

Commit 05ea5ca

Browse files
committed
Update README.md
1 parent 6a94ff9 commit 05ea5ca

File tree

1 file changed

+17
-4
lines changed

1 file changed

+17
-4
lines changed

README.md

+17-4
Original file line numberDiff line numberDiff line change
@@ -12,11 +12,15 @@ Dynamic graphs serve as a generic abstraction and description of the evolutionar
1212
## Citing
1313
If you find this project useful for your research, please cite our survey paper.
1414
```
15-
@article{qin2022temporal,
16-
title={Temporal Link Prediction: A Unified Framework, Taxonomy, and Review},
17-
author={Meng Qin and Dit-Yan Yeung},
15+
@article{qin2023temporal,
16+
title={Temporal link prediction: A unified framework, taxonomy, and review},
17+
author={Qin, Meng and Yeung, Dit-Yan},
1818
journal={ACM Computing Surveys},
19-
year={2023}
19+
volume={56},
20+
number={4},
21+
pages={1--40},
22+
year={2023},
23+
publisher={ACM New York, NY, USA}
2024
}
2125
2226
```
@@ -102,6 +106,9 @@ Details of the implemented TLP methods are summarized as follows.
102106
| TDGNN [[28]](https://dl.acm.org/doi/abs/10.1145/3366423.3380073?casa_token=jLhry0KLfTkAAAAA%3AM3P8hualerbyJaM34lWGwHAqIuN9d6lkh2nN5fqTIfo57Zx-3pKY7ifTQi-XMb7VRdAuHx_Lt7y4Yw) [(Code)](https://github.com/Leo-Q-316/TDGNN) | WWW 2020 | UESD | OTOG | 1 | Static | Unable |
103107
| HTNE [[29]](https://dl.acm.org/doi/pdf/10.1145/3219819.3220054?casa_token=Ddsd4L9GsSkAAAAA:JJbGLEFDF82wccb0txK4FfEMVDbiADcxeU8sp2itTxsZcOhlRQ_VD206kJJ9GyRpEvwqfDAKu17b2w) [(Code)](http://zuoyuan.github.io/files/htne.zip) | KDD 2018 | UESD | OTI | 1 | N/A | Unable |
104108
| SGR [[30]](https://ieeexplore.ieee.org/abstract/document/10183879) [(Code)](https://github.com/yinyanting123/SRG) | TKDE 2023 | ESSD | OTOG | 1 | N/A | Able |
109+
| EdgeBank [[31]](https://proceedings.neurips.cc/paper_files/paper/2022/file/d49042a5d49818711c401d34172f9900-Paper-Datasets_and_Benchmarks.pdf) [(Code)](https://github.com/fpour/DGB) | NIPS 2022 | UESD | OTOG | 2 | Dynamic | Unable |
110+
| GraphMixer [[32]](https://openreview.net/pdf?id=ayPPc0SyLv1) [(Code)](https://github.com/CongWeilin/GraphMixer) | ICLR 2023 | UESD | OTOG | 2 | Dynamic | Unable |
111+
| DyGFormer [[33]](https://proceedings.neurips.cc/paper_files/paper/2023/file/d611019afba70d547bd595e8a4158f55-Paper-Conference.pdf) [(Code)](https://github.com/yule-BUAA/DyGLib) | NIPS2023 | UESD | OTOG | 2 | Dynamic | Unable |
105112

106113
## Public Datasets for TLP
107114

@@ -253,3 +260,9 @@ Details of the implemented TLP methods are summarized as follows.
253260
[29] Zuo, Yuan, et al. Embedding Temporal Network via Neighborhood Formation. ACM KDD, 2018.
254261

255262
[30] Yin, Yanting, et al. Super Resolution Graph With Conditional Normalizing Flows for Temporal Link Prediction. IEEE TKDE, 2023.
263+
264+
[31] Poursafaei, Farimah, et al. Towards Better Evaluation for Dynamic Link Prediction. NIPS, 2022.
265+
266+
[32] Cong, Weilin, et al. Do We Really Need Complicated Model Architectures for Temporal Networks? ICLR, 2023.
267+
268+
[33] Yu, Le, et al. Towards Better Dynamic Graph Learning: New Architecture and Unified Library. NIPS, 2023.

0 commit comments

Comments
 (0)