@@ -12,11 +12,15 @@ Dynamic graphs serve as a generic abstraction and description of the evolutionar
12
12
## Citing
13
13
If you find this project useful for your research, please cite our survey paper.
14
14
```
15
- @article{qin2022temporal ,
16
- title={Temporal Link Prediction : A Unified Framework, Taxonomy , and Review},
17
- author={Meng Qin and Dit-Yan Yeung },
15
+ @article{qin2023temporal ,
16
+ title={Temporal link prediction : A unified framework, taxonomy , and review},
17
+ author={Qin, Meng and Yeung, Dit-Yan},
18
18
journal={ACM Computing Surveys},
19
- year={2023}
19
+ volume={56},
20
+ number={4},
21
+ pages={1--40},
22
+ year={2023},
23
+ publisher={ACM New York, NY, USA}
20
24
}
21
25
22
26
```
@@ -102,6 +106,9 @@ Details of the implemented TLP methods are summarized as follows.
102
106
| TDGNN [[ 28]] ( https://dl.acm.org/doi/abs/10.1145/3366423.3380073?casa_token=jLhry0KLfTkAAAAA%3AM3P8hualerbyJaM34lWGwHAqIuN9d6lkh2nN5fqTIfo57Zx-3pKY7ifTQi-XMb7VRdAuHx_Lt7y4Yw ) [ (Code)] ( https://github.com/Leo-Q-316/TDGNN ) | WWW 2020 | UESD | OTOG | 1 | Static | Unable |
103
107
| HTNE [[ 29]] ( https://dl.acm.org/doi/pdf/10.1145/3219819.3220054?casa_token=Ddsd4L9GsSkAAAAA:JJbGLEFDF82wccb0txK4FfEMVDbiADcxeU8sp2itTxsZcOhlRQ_VD206kJJ9GyRpEvwqfDAKu17b2w ) [ (Code)] ( http://zuoyuan.github.io/files/htne.zip ) | KDD 2018 | UESD | OTI | 1 | N/A | Unable |
104
108
| SGR [[ 30]] ( https://ieeexplore.ieee.org/abstract/document/10183879 ) [ (Code)] ( https://github.com/yinyanting123/SRG ) | TKDE 2023 | ESSD | OTOG | 1 | N/A | Able |
109
+ | EdgeBank [[ 31]] ( https://proceedings.neurips.cc/paper_files/paper/2022/file/d49042a5d49818711c401d34172f9900-Paper-Datasets_and_Benchmarks.pdf ) [ (Code)] ( https://github.com/fpour/DGB ) | NIPS 2022 | UESD | OTOG | 2 | Dynamic | Unable |
110
+ | GraphMixer [[ 32]] ( https://openreview.net/pdf?id=ayPPc0SyLv1 ) [ (Code)] ( https://github.com/CongWeilin/GraphMixer ) | ICLR 2023 | UESD | OTOG | 2 | Dynamic | Unable |
111
+ | DyGFormer [[ 33]] ( https://proceedings.neurips.cc/paper_files/paper/2023/file/d611019afba70d547bd595e8a4158f55-Paper-Conference.pdf ) [ (Code)] ( https://github.com/yule-BUAA/DyGLib ) | NIPS2023 | UESD | OTOG | 2 | Dynamic | Unable |
105
112
106
113
## Public Datasets for TLP
107
114
@@ -253,3 +260,9 @@ Details of the implemented TLP methods are summarized as follows.
253
260
[ 29] Zuo, Yuan, et al. Embedding Temporal Network via Neighborhood Formation. ACM KDD, 2018.
254
261
255
262
[ 30] Yin, Yanting, et al. Super Resolution Graph With Conditional Normalizing Flows for Temporal Link Prediction. IEEE TKDE, 2023.
263
+
264
+ [ 31] Poursafaei, Farimah, et al. Towards Better Evaluation for Dynamic Link Prediction. NIPS, 2022.
265
+
266
+ [ 32] Cong, Weilin, et al. Do We Really Need Complicated Model Architectures for Temporal Networks? ICLR, 2023.
267
+
268
+ [ 33] Yu, Le, et al. Towards Better Dynamic Graph Learning: New Architecture and Unified Library. NIPS, 2023.
0 commit comments