Skip to content
This repository has been archived by the owner on Nov 3, 2024. It is now read-only.

Not able to run #10

Open
GirishKumarSharma opened this issue Jan 28, 2023 · 0 comments
Open

Not able to run #10

GirishKumarSharma opened this issue Jan 28, 2023 · 0 comments

Comments

@GirishKumarSharma
Copy link

I added below :
import statsmodels
from statsmodels.tsa.stattools import adfuller
in first input.

Then I tested the code till :
#Stationarity test
def test_stationarity(timeseries):
...
...
I got stuck with this error message :

Results of dickey fuller test

---------------------------------------------------------------------------
MissingDataError Traceback (most recent call last)
Input In [102], in <cell line: 27>()
25 else:
26 print("Weak evidence against null hypothesis, time series is non-stationary ")
---> 27 test_stationarity(train['Close'])
`Input In [102], in test_stationarity(timeseries)` ` 16 plt.show(block = False)` ` 18 print('Results of dickey fuller test')` `---> 19 result = adfuller(timeseries, autolag = 'AIC')` ` 20 labels = ['ADF Test Statistic','p-value','#Lags Used','Number of Observations Used']` ` 21 for value,label in zip(result, labels):`
File ~/.local/lib/python3.10/site-packages/statsmodels/tsa/stattools.py:321, in adfuller(x, maxlag, regression, autolag, store,regresults)
315 # 1 for level
316 # search for lag length with smallest information criteria
317 # Note: use the same number of observations to have comparable IC
318 # aic and bic: smaller is better
320 if not regresults:
--> 321 icbest, bestlag = _autolag(
322 OLS, xdshort, fullRHS, startlag, maxlag, autolag
323 )
324 else:
325 icbest, bestlag, alres = _autolag(
326 OLS,
327 xdshort,
(...)
332 regresults=regresults,
333 )
`File ~/.local/lib/python3.10/site-packages/statsmodels/tsa/stattools.py:129, in _autolag(mod, endog, exog, startlag, maxlag,method, modargs, fitargs, regresults) 127 method = method.lower() 128 for lag in range(startlag, startlag + maxlag + 1): --> 129 mod_instance = mod(endog, exog[:, :lag], *modargs) 130 results[lag] = mod_instance.fit() 132 if method == "aic":``File ~/.local/lib/python3.10/site-packages/statsmodels/regression/linear_model.py:906, in OLS.init(self, endog, exog, missing, hasconst, **kwargs)` ` 903 msg = ("Weights are not supported in OLS and will be ignored"` ` 904 "An exception will be raised in the next version.")` ` 905 warnings.warn(msg, ValueWarning)` `--> 906 super(OLS, self).__init__(endog, exog, missing=missing,` ` 907 hasconst=hasconst, **kwargs)` ` 908 if "weights" in self._init_keys:` ` 909 self._init_keys.remove("weights")`
File ~/.local/lib/python3.10/site-packages/statsmodels/regression/linear_model.py:733, in WLS.__init__(self, endog, exog, ``weights, missing, hasconst, **kwargs)
731 else:
732 weights = weights.squeeze()
--> 733 super(WLS, self).__init__(endog, exog, missing=missing,
734 weights=weights, hasconst=hasconst, **kwargs)
735 nobs = self.exog.shape[0]
736 weights = self.weights
`File ~/.local/lib/python3.10/site-packages/statsmodels/regression/linear_model.py:190, in RegressionModel.__init__(self, endog,exog, **kwargs) 189 def init(self, endog, exog, **kwargs): --> 190 super(RegressionModel, self).init(endog, exog, **kwargs) 191 self._data_attr.extend(['pinv_wexog', 'wendog', 'wexog', 'weights'])``File ~/.local/lib/python3.10/site-packages/statsmodels/base/model.py:267, in LikelihoodModel.init(self, endog, exog, **kwargs)` ` 266 def __init__(self, endog, exog=None, **kwargs):` `--> 267 super().__init__(endog, exog, **kwargs)` ` 268 self.initialize()`
File ~/.local/lib/python3.10/site-packages/statsmodels/base/model.py:92, in Model.__init__(self, endog, exog, **kwargs)
90 missing = kwargs.pop('missing', 'none')
91 hasconst = kwargs.pop('hasconst', None)
---> 92 self.data = self._handle_data(endog, exog, missing, hasconst,
93 **kwargs)
94 self.k_constant = self.data.k_constant
95 self.exog = self.data.exog
`File ~/.local/lib/python3.10/site-packages/statsmodels/base/model.py:132, in Model._handle_data(self, endog, exog, missing,hasconst, **kwargs) 131 def _handle_data(self, endog, exog, missing, hasconst, **kwargs): --> 132 data = handle_data(endog, exog, missing, hasconst, **kwargs) 133 # kwargs arrays could have changed, easier to just attach here 134 for key in kwargs:``File ~/.local/lib/python3.10/site-packages/statsmodels/base/data.py:700, in handle_data(endog, exog, missing, hasconst, **kwargs)` ` 697 exog = np.asarray(exog)` ` 699 klass = handle_data_class_factory(endog, exog)` `--> 700 return klass(endog, exog=exog, missing=missing, hasconst=hasconst,` ` 701 **kwargs)`
File ~/.local/lib/python3.10/site-packages/statsmodels/base/data.py:88, in ModelData.__init__(self, endog, exog, missing, ``hasconst, **kwargs)
86 self.const_idx = None
87 self.k_constant = 0
---> 88 self._handle_constant(hasconst)
89 self._check_integrity()
90 self._cache = {}
`File ~/.local/lib/python3.10/site-packages/statsmodels/base/data.py:134, in ModelData._handle_constant(self, hasconst)` ` 132 exog_max = np.max(self.exog, axis=0)` ` 133 if not np.isfinite(exog_max).all():` `--> 134 raise MissingDataError('exog contains inf or nans')` ` 135 exog_min = np.min(self.exog, axis=0)` ` 136 const_idx = np.where(exog_max == exog_min)[0].squeeze()`
MissingDataError: exog contains inf or nans
`train_log = np.log(`

I give up for formatting. God knows, how this type of error stack can be provided to developer. Height of frustration.

Sign up for free to subscribe to this conversation on GitHub. Already have an account? Sign in.
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant